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Steady Electric Currents
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Sec. 10-1

Current Density

1. Definition
2. Convection currents
3.  Conduction currents



"

Definition-1
TR elemental
Vj /surface
« AS ——— >
O ° O o ©
N (m™) oq

Volume charge density: p = gN (C/m3)



" A
Definition-2
Within a time interval Az, the amount of

charge AQ enclosed by a volume Ay will pass
through the elemental surface

AQ = pAv = pliiAt)-(a@, As)= pAt(ii - @, As)



Definition-3

AQ = pAt(ii-a As), = 1= % =- d As)

Current / can be regarded as the “flux” of a
volume current density J , i.e., I =J-(a, As)

= |J = pii| (AIm?)




Convection currents

Convection currents result from motion of

charged particles (e.g. electrons, ions) Iin
vacuum (e.g. cathode ray tube), involving with
mass transport but without collision.

oéOéé




Example 10-1: Vacuum tube diode (1)

1. Electrons are

J(Vy) =7 Curent boiled away from
Anprte by b osllve potental the incandescent
Vacuum N cathode with zero
T 8 initial velocity
— (space-charge
%T 7 o limited condition).

- Fﬁm 2.Anode has

elecirons positive potential,
T | e aeenens -
attracting the free

rM{l—'_ electrons.

sUpply




Example 10-1: Vacuum tube diode (2)

By planar symmetry, =

1. Potential: V' (), BCs: V(0) =0,V (d) =V,
2. Volume charge density: o(»)

3. Charge velocity: u = a u(y)

Anode
y=d L 2 7 7777 77
- J
y=0 7 7 7 7 7 7 7 7]

— Cathode
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Example 10-1: Vacuum tube diode (3)
By space-charge limited condition, =
1. Zero initial charge velocity: #(0) =0
2. Zero boundary E-field: £ (0)=0, = V'(0)=0

Anode

y=d L 2 72 777777
S J u =0,
E=0

y=0 7 7 7 7 7 7 7 7 7]

— Cathode



Example 10-1: Vacuum tube diode (4)

(1) In steady state, J =—a J

—

wJ =pu, = J=—p(y)u(y) = constant,
J
u(y)

p(y) =~

1
(2) By energy conservation, eV (y) = Emuz(y)

m
2eV (y)

2eV (y)

m

=>u(y)=\/ , p(y)=—J\/



Example 10-1: Vacuum tube diode (5)

(3) Since free charges exist inside the tube:

V2V = _P . .Poisson’s equation
&
:dZV:_p(y):J m
dy2 £, g, \ 2V (y) ...Nonlinear

ODE
(4) Shortcut to get J(V,):

Multiply both sides by z”;—V
24

dv d*v ,J AV | m
2eV (y)

2

dy dy° & dy



Example 10-1: Vacuum tube diode (6)

Integrate with respect to y:

dv d’v ,J AV | m
2eV (v)

2

dy dy* & dy

o) v Oy == [ jrmar)

dV 2_4J mV(y)
(d—yj ) 50\/ 2e +@




Example 10-1: Vacuum tube diode (7)

By BCs of the potential: (0) =0, V'(0) =0

1/4

= c =0, d—V:Z S| mV ()
dy & 2e

J m 1/4
:>V1’4dV:2\F( ) dy
&y \ 2e
1/4
Lyl 1
&y \ 2e




Example 10-1: Vacuum tube diode (8)

Child-Langmuir law:

J:4go ZeVgD

9 \m d°

Differ from Ohm’s law ( / oc V') of conduction
current.

Differ from forward-biased semiconductor
diode ( I oc ).
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Example 10-1: Vacuum tube diode (9)

Glass envelope

ate (anode)

Filament (cathode)

Triode (transistor)



Conduction (drift) currents-1

Conduction currents result from drift motion of
free electrons due to applied E-field in
conductors, involving with frequent collisions
with immobile ions.

—_—

E

—m @ —kT
O O/OO O O O creoveme o

depending on the lattice.

OO O O‘é\ O O &g Atr=300K,

v, ~ 10°> m/sec



Conduction (drift) currents-2

In steady state, two forces are balanced with
each other (Drude model).

1. Electric force: —eE average momentum
change in each collision

A
2. Frictional force: —@ mean scattering time

—” between collisions

=i, = LAy —@E‘ ...drift (average) velocity
m

n

For typical fields, u,~ mm/sec



"
Conduction (drift) currents-3

2
et m

Electron mobility ¢, = — describes
m_ |\ V-sec

n

how easy an external E-field can influence the
motion of conduction electrons.

E.gQ.
Silicon: ¢, =1.35x107, 1, =4.8x107?
1-D carbon nanotube: yx, =10

Copper: u, =2.3x107°




Conduction (drift) currents-4

—

—_—

By J=pu, uy=—pE

:j:peﬁd :_pelLleE’

—

—_—

J =coE

<0

(A/m?2) ...conduction current density

o=—p, i, (S/m) ...electric conductivity

For semiconductors:

O = _pell’le + p@uh

holes
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Sec. 10-2

Current Laws

1.
2.
3.
4.

Ohm'’s law

Electromotive force & KVL
Equation of continuity & KCL
Joule’s law



Ohm’s law-1

Consider a piece of homogeneous, imperfect
conductor (o < o) with arbitrary shape:

microscopic law:

J =ok

Vi =V.—V,=| E-dl, I=\J-ds=|cE-ds

12 1 2 J‘@ @ JA

i_inc_e the spatial v J‘ E.-dl
istributionof £ is — Rp=-12 —_JL — constant

independent of 7, / GJAE - ds



"

Ohm’s law-2

Consider a piece of homogeneous, imperfect
conductor (o< o) with uniform cross-section:




Electromotive force (emf)-1

If there is only conservative electric field £
(created by charges):

= J=of, §E-dl=§ (J)o)dl=0

— no steady loop current!

— Non-conservative field is required to drive
charges in a closed loop



"

Electromotive force (emf)-2

Consider an open-circuited battery:

chemical reaction

Impressed field

v =((E)dl

emf: the strength of non-conservative force



"

Electromotive force (emf)-3




"

Kirchhoff's voltage law (KVL)

If the two terminals are connected by a

. . . . L
uniform conducting wire of resistance: R = —
Oi




"

Equation of continuity-1

O
S\ N [
o pri) o(7,t+ At)
©0° 09 4 09 0 ~
o ° o © 0 °
o O O o O O

Q= ij(?, t)dv

O'=[ p(F.i+Ar)dv



Equation of continuity-2

Principle of conservation of charge, = a net
current / flowing out of " must be due to the
decrease of the enclosed charge:

j “m@—' decrease of change

MO Af within J during At

§j-d§=_[ p(l”,t)—p(r,t+At)dV:J‘ —5p(r,t)dv
5 v At v ot

\ Divergence theorem

- op ~ op
[ (v v:—IVEdv = V.J=-T



Kirchhoff's current law (KCL)

V-jz—a—p . vy.j=0 ...nocurrent
source/sink

]3
>1,=f7-d5 = [ (g hiv=0
J

A



Example 10-2: Dynamics of charge density (1)

t=0 2
. \ o = constnat o
_ O
O & =consthat
o O O p =0
o O E=0
O
v.j=-P"




Example 10-2: Dynamics of charge density (2)

V-B:p
1 V-D=V.(E)=eV-E)=p
D=t |
v.E:_la_p

o o > 8—'O+g,0=0
v.p=P ) o ¢

&

/7 g | ...Lifetime of free
charge in a conductor
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Joule’s law-1

With E , collisions among free electrons (with
drift velocity ©,) & immobile atoms transfer
energy from E to thermal vibration.

E
© 0,0 0,0 O
o ‘/o/' \o o
00 0%“0-0 O




Joule’s law-2

E
Differential drift displacement within At: Al J
———————— N
o7 e i N
g§ @ 8 /O<—o\
‘ Q. - o

~ - ~ -
- -~ -
~~-————‘ ‘-————‘

Work done by E to move charge Q for A, is:
Aw=QE-Al,,

corresponding to a power dissipation:

. Aw _
p=im——=0F-i,



Joule’s law-3

E(7)

Power dissipated in a differential volume dv is:
Ap = pdv(E -ii, )= (E - pii, Jdv = (E - T )dv

— |E - J|(W/mB3) is power density,
P

:jV(Ej V| ... Joule’s law




"

Joule’s law-4

Power dissipated in a homogeneous
conductor of uniform cross section:

=[ (E-Thv={ (E-J)sdl=| E-1dl =V,1
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Sec. 10-3

Boundary Conditions

1. BCs of current density

2.  Examples: Two lossy media
connected in series



Derivation of BCs-1

1. Divergence & curl relations of J:
(1) For steady currents: =0

= ok
W ] = ok }>VXE:VxUﬂﬂ=

VxE=0
2. Integral forms:
() §.J-ds=0
S

04,2



Derivation of BCs-2

3. Apply the integral relations to a
(1) differential pillbox:

§ J-ds=0—J, =,
(1) differential loop:
Z.d‘:O :Jlt:JZt

C o o, O,




Example 10-3: BCs between two lossy media (1)

Represent the surface charge density p, by
either D,, or D,

Medium 1 &, O
—_—
't + A+

Ps

Medium 2 &, 0,



Example 10-3: BCs between two lossy media (2)

Medium 1 €, 0 {az'(ﬁl_ﬁz):p
D _ _
ol J 17 _
oy I ) D=éb
L D,, = p, =D, - D,,
Medium 2 &, O, = &by, — &1,
O
T I Eln = _2E2n
J =cok o
— GlEln = 02E2n
Jln = J2n 01



Example 10-3: BCs between two lossy media (3)

o) o D,
p, =&k, —&k,, = 81(_2E2n]_82E2n :(51_2_52j[ : ],

O, O, )
0,6 L
— P, = —-11D,,; similarly,
0,6,
0,5,
— pS: 1_ Dln
0,6,
o,=0 only If:
. O, O
(i) —t=—%, rarely happens;
& &

(i) o, =0, =0 ...both media are lossless



Example 10-4: Electromagnetostatic field (1)

Find J, E , and surface charge densities p,

—

P Y
€. 0 ll—i\‘v] §1 dl I
= x
- = .\
J lEZ
&, 0, d,
o ||
4| J
By planar symmetry and J,, =J,,, =J=-a,J
= s = J J
By J:GE,:}Ei:—:—ayEi, Ei:_
O; 0}



Example 10-4: Electromagnetostatic field (2)

d,

O,

By V,=Ed +E,d, J[d
O,
v
= J = 0
(dl/gl)_l_(dZ/GZ)
Elzi: GZVO , E2=—

o, 0.,d +o0,d, o,

)




Example 10-4: Electromagnetostatic field (3)

B 1 Py =D =&k,
— p‘;] >
£, O, l E, d, &,0, VO
i— X —
£, O, d,
Py v > IOSZ — _DZ — _82E2
—] i J




Comments
‘psl = ‘IOSZ 1 bUt
— ]
p, T _
6.0 lE Cld patp,tp;=0
[) A 4
S0 N LY, A ,
= J l ; Gauss’s law, = no
&, 0, d : :
. E-field outside the
2 .
L i capacitor.

Static charge and steady current (i.e., static
magnetic field) coexist, = one of rare examples
of electromagnetostatic field.
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Sec. 10-4

Evaluation of Resistance

1.  Standard procedures
2.  Example
3. Relation between R and C



Evaluation of single-(imperfect)conductor resistance

1. Assume between 2 selected end faces
2. Find V() by solving V2V =0 with BCs

4. Find total current by [ = Isj-a@ = jscﬁ- ds

v,
5.FindRby R = ¥ , Independent of /,



"

Example 10-5: Resistance of a washer (1)

Find R of a quarter-circular washer of
rectangular cross section and o < «, if the two
electrodes are located at ¢ = 0, 712, respectively

TRVEVA

Ok

Assume: (1) V(¢=0)=0, V(p=x/2)=V,



" JE

Example 10-5: Resistance of a washer (2)

(2) Current flow and £ are in —a,
=>V(r ¢, z) =V (9)

Y

VY =0, =V"(¢)=0
Vig)=cp+c,

V(¢=0)=0,
Vig=n/2)=V,

Vig) = ¢




" JE

Example 10-5: Resistance of a washer (3)

¥

]:Ij d§=jb2VOG-hdr=2V°Uhln b
S a -y T a
V, T

7 20h1n(b/a)



Evaluation of resistance between two perfect conductors

RC=V-
1

N0

— one can evaluate R by finding C first!



Example 10-6: Resistance of a coaxial cable

Find the leakage resistance between inner and
outer conductors of a coaxial cable of length L,
where a lossy medium of conductivity ois filled

Dielectric, ¢

_ 27el
In(b/a)
po b In(b/a)
. oC 2nol



