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Sec. 10-1
Current Density

1. Definition
2. Convection currents
3. Conduction currents



Definition-1

( )3mC qN=ρVolume charge density:



Within a time interval     , the amount of 
charge        enclosed by a volume       will pass 
through the elemental surface 
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Definition-3
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Convection currents

Convection currents result from motion of 
charged particles (e.g. electrons, ions) in 
vacuum (e.g. cathode ray tube), involving with 
mass transport but without collision.

q



Example 10-1: Vacuum tube diode (1) 

1.Electrons are 
boiled away from 
the incandescent 
cathode with zero 
initial velocity 
(space-charge 
limited condition).

2.Anode has 
positive potential, 
attracting the free 
electrons.
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Example 10-1: Vacuum tube diode (2) 

By planar symmetry, ⇒

1. Potential:         , BCs:

2. Volume charge density:

3. Charge velocity: 
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Example 10-1: Vacuum tube diode (3) 

By space-charge limited condition, ⇒

1. Zero initial charge velocity:

2. Zero boundary E-field:
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Example 10-1: Vacuum tube diode (4) 

(1) In steady state, JaJ y
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Example 10-1: Vacuum tube diode (5) 

(3) Since free charges exist inside the tube:
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Example 10-1: Vacuum tube diode (6) 

Integrate with respect to y: 
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Example 10-1: Vacuum tube diode (7) 

By BCs of the potential: 0)0(  ,0)0( =′= VV
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Example 10-1: Vacuum tube diode (8) 

Child-Langmuir law:
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Differ from Ohm’s law (          ) of conduction 
current.

Differ from forward-biased semiconductor 
diode (              ).
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Example 10-1: Vacuum tube diode (9) 

Triode (transistor)



Conduction (drift) currents-1

Conduction currents result from drift motion of 
free electrons due to applied E-field in 
conductors, involving with frequent collisions 
with immobile ions.
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E.g. At T =300K,
vth ~ 105 m/sec

-e
Effective mass of e-, 
depending on the lattice.



mean scattering time 
between collisions

Conduction (drift) currents-2

In steady state, two forces are balanced with 
each other (Drude model):

1. Electric force:

2. Frictional force:
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average momentum 
change in each collision

…drift (average) velocity

For typical fields, ud ~ mm/sec



Conduction (drift) currents-3

Electron mobility describes

how easy an external E-field can influence the 
motion of conduction electrons.
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Silicon:

1-D carbon nanotube:

Copper:
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Conduction (drift) currents-4
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(S/m) …electric conductivity
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Sec. 10-2
Current Laws

1. Ohm’s law
2. Electromotive force & KVL
3. Equation of continuity & KCL
4. Joule’s law



Ohm’s law-1

Consider a piece of homogeneous, imperfect
conductor (σ < ∞) with arbitrary shape:
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Ohm’s law-2

Consider a piece of homogeneous, imperfect 
conductor (σ < ∞) with uniform cross-section:
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Electromotive force (emf)-1

If there is only conservative electric field    
(created by charges):
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⇒ no steady loop current!

⇒ Non-conservative field is required to drive 
charges in a closed loop



Electromotive force (emf)-2

Consider an open-circuited battery:

chemical reaction

impressed field
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Electromotive force (emf)-3
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Kirchhoff’s voltage law (KVL)

If the two terminals are connected by a 
uniform conducting wire of resistance:

S
LR

σ
=

,outsideEJ
vv

σ=

IR
S

ILldJ

ldE

C
==⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⋅=

∫

∫

σσ 

2 

1 outside

 
v

v

vv
V

,SIJ =

∑∑ =
k

kk
j

j IRVMulti-sources: …KVL



Equation of continuity-1
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Principle of conservation of charge, ⇒ a net 
current  I flowing out of V must be due to the 
decrease of the enclosed charge:

Equation of continuity-2
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For steady currents, 

Kirchhoff’s current law (KCL)
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Example 10-2: Dynamics of charge density (1)
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Example 10-2: Dynamics of charge density (2)
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Joule’s law-1

With      , collisions among free electrons (with 
drift velocity     ) & immobile atoms transfer 
energy from       to thermal vibration.
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Joule’s law-2

Work done by      to move charge Q for        is:E
v

E
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Joule’s law-3

Power dissipated in a differential volume dv is:
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Joule’s law-4

Power dissipated in a homogeneous 
conductor of uniform cross section:
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Sec. 10-3
Boundary Conditions

1. BCs of current density
2. Examples: Two lossy media 

connected in series



1. Divergence & curl relations of     :
(i) For steady currents:
(ii) 

Derivation of BCs-1
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3. Apply the integral relations to a
(i) differential pillbox:

(ii) differential loop:

Derivation of BCs-2

0 
 

=⋅∫S
sdJ vv

0 
 

=⋅∫C
ldJ v

v

σ

nn JJ 21 =

2

2

1

1

σσ
tt JJ

=



Example 10-3: BCs between two lossy media (1)

Represent the surface charge density ρs by 
either D1n or D2n



Example 10-3: BCs between two lossy media (2)
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Example 10-3: BCs between two lossy media (3)
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Example 10-4: Electromagnetostatic field (1)

Find     ,     , and surface charge densities ρsJ
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Example 10-4: Electromagnetostatic field (2)
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Example 10-4: Electromagnetostatic field (3)
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Comments

but,21 ss ρρ ≠

021 =++ siss ρρρ

Gauss’s law, ⇒ no 
E-field outside the 
capacitor.

Static charge and steady current (i.e., static 
magnetic field) coexist, ⇒ one of rare examples 
of electromagnetostatic field.



Sec. 10-4
Evaluation of Resistance

1. Standard procedures
2. Example
3. Relation between R and C



Evaluation of single-(imperfect)conductor resistance

1. Assume        between 2 selected end faces

2. Find           by solving                 with BCs
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Example 10-5: Resistance of a washer (1)

Find R of a quarter-circular washer of 
rectangular cross section and σ < ∞, if the two 
electrodes are located at φ = 0, π/2, respectively
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Example 10-5: Resistance of a washer (2)
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Example 10-5: Resistance of a washer (3)
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Evaluation of resistance between two perfect conductors
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⇒ one can evaluate R by finding C first!



Example 10-6: Resistance of a coaxial cable

Find the leakage resistance between inner and 
outer conductors of a coaxial cable of length L, 
where a lossy medium of conductivity σ is filled
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