Electromagnetics P9-1

Lesson 09 Capacitance, Electrostatic Energy

9.1 Capacitance

m Definitions

If we deposit an amount of charge Q = qu on one piece of conductor, the free charges
k=1
1 <&

will redistribute on the conducting surface such that the potential V =
4re, 'a R,

(assuming V =0 at infinity) is constant for any observation point P inside and on the
surface of the conductor (Fig. 9-1a), in agreement with eq’s (7.2), (7.3). If we deposit a
different amount of charge Q"'=rQ (r is a constant) on the same conductor, the surface
charges will maintain the spatial distribution (Fig. 9-1b) such that the potential of the entire

conductor V' can still be constant. As a result, the new potential value becomes

V'= ! Zﬂzrv, in proportional to the deposited charge. The constant ratio of
4rey 1T Ry

deposited charge to resulting potential is defined as the capacitance of a single conductor:

_Q
C=5 (9.1)
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Fig. 9-1. A single-conductor capacitor deposited with an amount of charge (a) Q, and (b) 2Q, respectively.

Example 9-1: Find the capacitance of a conducting sphere of radius b .

Ans: Assume an amount of charge Q is deposited on the conducting sphere. Due to

spherical symmetry, the charges will distribute uniformly on the surface, creating an electric
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field intensity (evaluated by Gauss’s law):

- QRLZ,ifRZb
E= 4reyR .

0,if0<R<b

The surface potential is: V(R=b)=—[ |a _Q -(azdR) = Q By eq. (6.1),
=\ 47, R? " 4reyb

C:9:47zgob.
\

If we connect two pieces of conductor by a dc voltage V,,, a proper amount of charge +Q
will be deposited on one piece and —Q will be deposited on the other, creating an electric
field distribution and supporting a potential difference V,, between them (Fig. 9-2). If the
voltage changes to V), =rV,,, the spatial distributions of surface charges and electric field
remain unchanged but the total amount of charge changes to Q' =rQ. The constant ratio of

deposited charge to voltage difference is defined as the capacitance of the conducting pair:

(9.2)

Fig. 9-2. A two-conductor capacitance (after DKC).

Note that the single-conductor capacitor can be regarded as a special case of two-conductor

capacitor, where the second conductor with zero potential is located at infinity (V,, =V -0).
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m Evaluation procedures

Three methods to evaluate the capacitance are summarized as follows:

1) (1) Assume charges +Q are deposited on the conductors. (2) Find E by Gauss’s law
or vector integration [eq. (6.10)]. (3) Find V,, (ocQ) by line integral: V,, =—_[12E-df.
(4) Find C by eq. (9.2), which is independent of Q.

2) (1) Assume a potential difference V =V,, between the two conductors. (2) Find the

potential “distribution” V(F) by solving the boundary-value problem (Lesson 8). (3)

Find E by E=-VV(F) [eq. (6.11)]. (4) Find the free surface charge density p(F)

of either conductor by the normal boundary condition E, =P [eq. (7.4)]. (5) Find the
&

0

total deposited free charge Q by scalar surface integral Q = ﬂ p.(r)ds (cV'), where

S denotes the closed surface of one of the two conductors. (6) Find C by eq. (9.2),
which is independent of V .

3) (1) Assume deposited charges +Q or potential difference V for the two conductors. (2)
Find E and D by the previous methods. (3) Find the stored electrostatic energy W,

(@ or VZ) by vvffv(%f"éjdv [ea. (9.7)]- (4) Find C by We:% >

2
We:CV
2

[eg. (9.8)], which is independent of Q or V.

Example 9-2: Find the capacitance of a parallel-plate capacitor (Fig. 9-3).

Ans: (M1) Assume charges +Q are deposited on the conducting plates. Because of planar

symmetry, the charges are uniformly distributed on the plates. By Gauss’s law, E = -a, %
The potential difference between the top and bottom plates is: V,, = —.[Od E (aydy) di By

eq. (9.2), C :Vg’ =

12
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S
C=e= 9.3
£ (9.3)

(M2) Assume the potentials of the top and bottom plates are V, =V,, V, =0, respectively.

= V, =V, -V, =V,. The solution to the corresponding boundary-value problem becomes:

V(f)z\(/j—"y. = E:—VV(f):—éy\;—o. On the top surface (y=d) E,=E-a,

= (— a, \%)(— ay):\;—". By the normal boundary condition E, :%, Psr = E L8 :%.
0
= Q=p,,S= 6\3’8 , C =Vg:g§, same as eq. (9.3).
0

Plate 1

Fig. 9-3. A parallel-plate capacitor with two conducting plates of area S spaced by a dielectric

material of thickness d and permittivity & . Stray electric field lines exist at the edges.

Example 9-3: Find the capacitance of a coaxial cable of length L with inner and outer
conducting radii of a and b, respectively (Fig. 9-4).

Ans: (M1) Assume charges =Q are deposited on the conducting plates. Because of

cylindrical symmetry, the charges are uniformly distributed on the two conductors. By

Q

Gauss’s law, E =a,
2rerlL

. The potential difference between the conducing core and shell is:

_ [PE-(adr)=-2 12 _Q
V,, = Ib E-(adr)= ool In(aj. By eq. (9.2), C v, =
2rel
C= In(b/a) 64
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Dielectric, ¢

Fig. 9-4. A coaxial capacitor with inner conducting core of radius a and outer conducting shell of
radius b, spaced by a dielectric material of permittivity &. No stray electric field line exists.
(After DKC.)

<Comment>

The capacitance is determined by: (1) The geometry of the conductors. E.g. % in parallel

plates, in coaxial cable. (2) The permittivity & of the dielectric material.

L
In(b/a)

9.2 Electrostatic Energy
m Electrostatic energy of assembling charges

By eq. (6.13), the potential field due to a point charge Q, at a position P, (the origin) is:

V(R):4Q—1R (assuming V =0 at infinity). To bring a charge Q, from infinity to a

&o

position P, spaced from P, by a distance R,, the amount of work to be done is

W, =Q.,V, :&, where V, =V (R,,) denotes the potential at P, due to charge Q,
4re,R,,

(Fig. 9-5a).
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(a) (b) V(R
=V(R,,) ' h
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Fig. 9-5. Awork W, has to be done to assemble a system of two point charges Q;, Q, spaced by a

distance of Ry,.

Similarly, the potential field due to a point charge Q, at a position P, (the origin) is:
V'(R)=4Q—2R (assuming V'=0 at infinity). To bring a charge Q, from infinity to a
TE,

position P, spaced from P, by a distance R, the amount of required work is still

W, =Q, 1=&, where V, =V'(R,,) denotes the potential at P, due to charge Q,

&Ry

(Fig. 9-5b).

If we bring a third point charge Q, from infinity to a position P, spaced from charges P,

and P, by distancesof R, and R,;, respectively; an additional work of:

AW =QyV; = QS[V(R13) +V'(R23)]: Q3(47ZSlR " 47ZSZR ],

has to be done. The total energy stored by the system of three charges is:

W3 :Wz + AW = ! (QIQZ + QlQ?’ + Qngj.
dre, | Ry, Ry Ry

If V, denotes the potential of charge Q, at position P, (k =1, 2, 3) due to the remaining
Q . Q ) Q , 9

charges, i.e. V, = , Vv, = , V= ,
dre,R, 4ng,Ry, Are,R, Angy Ry, Are,R;;  4rg,R,,

1
W, = E (lel +Q,V, + sts) .
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The electrostatic energy stored by a system of N discrete charges is thus:

13 1 Q;
W, =§ZQka , Where V, = > =L (9.5)

k=1 47[80 j=k R]k

For a system of continuous charge distribution with volume density o(r) over a volume V',
eq. (9.5) is modified as:

W, = L rV(r)dv 9.6

=5, POV D) (9.6)

where V(r) represents the potential at source point © as a result of the “total” charge

distribution.

Example 9-4: Find the energy stored in a sphere of radius b with uniform volume charge
density p.
Ans: By spherical symmetry, E =a,E(R). By Gauss’s law,

ag 3ﬁ ifO<R<b

_ &0
E-= L=

3
aRiRz,ifsz

0

For 0<R<b, V(R)=-[ E(R)-(a&aR)=-]" po° dR'+J'bRp—WdR’ =L (3°-R?).

= 3g,R" 3g, 6,
2125
= By eq. (9.6), W, =%J.Opr(R)(47zR2dR) = 4;[’; b (cb® if p is a constant). Since the
&o
3 2
total charge Q = 47 LN W, = 3Q (cl/b if Q isa constant).
3 207syb

: : . R pb’ b’
Note that the potential outside the sphere (R>Db) is: V(R)=—j 3. R dR'=3 %
* 9y &o

However, this is not used in evaluating the stored energy for all the source points in eq. (9.6)

are inside the sphere.
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m Electrostatic energy of electric fields
In terms of real applications of electromagnetism (especially electromagnetic waves), sources
are usually far away from the region of interest and only the resulting fields are given. It

becomes more convenient to express the electric energy W, by the electric field quantities

E and D in the absence of the charge distribution p.

(1) Substituting p=V-D [eq. (7.8)] into eq. (9.6), =

1 _
W, :EJV,(V- D Vv,
where V' is a volume containing all the source charges.
(2) Substituting f =V and A=D into the vector identity V-(fﬂ): f(V-A)+ A-Vf, =
1 = 1 =
W, :EJ‘V,V-(\/D)dv—EJ‘V,D-(VV)dv.

(3) By divergence theorem [eq. (5.24)], = J'V,V-(\/D)dv:i,\/lj-da where S’ is the

closed surface of V'.By E =-VV [eq. (6.11)], = IV, D-(VV )dv = —J'V,(D- E)dv. =

leo2 o l¢ (2 =
W, =1, +1,, where |1=5§SVD-ds, |2=EJV,(D-E)dv.
(4) One can choose S’ as a spherical surface centered at the origin with an infinite radius

R — oo, such that all the source charges are definitely enclosed. For an observation point (on

S") far away from the source (at the origin), the potential V oc%, and the field magnitude

_ 1 _1 — _~1 = 2 1 1 2 1 _
‘D‘oc?.: |1—E§S,\/D-ds~EV(R)\D(R)\'47ZR *n R Reg 20 W=l =
_ 1z = 3
W, = [ w,(r)dv, w, =~ D-E (Im’) (©.7)

where V' has to cover everywhere with nonzero electric field, and w, represents the

electrostatic energy density. However, the physical justification has not been found to

localized energy with an electric field.
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Example 9-5: Find the energy stored in a parallel-plate capacitor with two conducting plates
of area S spaced by a dielectric material of thickness d and permittivity & (Fig. 9-3) and
biased by a dc voltage V .

Ans: According to the solution to Example 9-2, the electric field between the plates is

2
uniform: E=-a,—, D =¢E. By eq. (9.7), the energy density is: w, :%g[%j . The total

o<

stored energy (assuming no field exists outside the capacitor) is:

2
W, =13(!} -Sd =£($§)\/2.
2 \d 2\ d

Byeq’s (9.2),(9.3),= C :8: g%, we got:

1 Q? 1
W, ==CV?==-=-QV 9.8
e =5 2C 2Q (9.8)

Eq. (9.8) is useful in evaluating electrostatic energy stored in general capacitors.

Example 9-6: Find the capacitance of a coaxial cable (Example 9-3) by eq. (9.8).

Ans: (M3) Assume charges +Q are deposited on the conducting plates. Because of

2
cylindrical symmetry, we can apply Gauss’s law to get: E =a, Q A :lg Q ,
2merl 2 \ 2melr

= We:%gjb( Q j(Zﬂl’dl’L)= Q Ubgj— Q In(gj.Byeq. (9.8), =

al 27elr drd \Jar ) Az
Q* 274

C = = ’

2W, In(b/a)

same as eq. (9.4).

Example 9-7: Find the energy stored in a sphere of radius b with uniform volume charge
density p (Example 9-4) by eq. (9.7).
Ans: By spherical symmetry, E =a,E(R). By Gauss’s law,
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27r,02b5

45¢,

For 0<R<b, W, j—go(ij (4R dR)_Z”p U R“dR)

3 \2 21,6 215
For R>b, sz_[ 180 P (4ﬂR2dR):M J' idR :M.
¢ b 2 3:R? 9¢, b R? 9¢,

The total stored energy is:

W, —w,, +w,, = 472" 3Q°
¢ 1B, 207eb

equal to that derived by eq. (9.6). The corresponding “capacitance” can be evaluated by eq.

Q° _107g,b
2W 3

e

(9.8): C=

Example 9-8: Find the energy stored in a conducting sphere of radius b with total charge

Q by eq. (9.7). Find the corresponding capacitance (Example 9-1) by eq. (9.8).

| a2 ifR2p
Ans: By spherical symmetry and Gauss’s law, E = 4re,R L=

0, otherwise

_ ml L i 2 _ QZ
w, =, 250(4% sz (47R%dR)

A 87e,b

2
The corresponding capacitance can be evaluated by eq. (9.8): C = 2(\2N

e

=4reh.
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