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Lesson 09 Capacitance, Electrostatic Energy 

 

9.1 Capacitance 

■ Definitions 

If we deposit an amount of charge ∑
=

=
n

k
kqQ

1
 on one piece of conductor, the free charges 

will redistribute on the conducting surface such that the potential ∑
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(assuming 0=V  at infinity) is constant for any observation point P  inside and on the 

surface of the conductor (Fig. 9-1a), in agreement with eq’s (7.2), (7.3). If we deposit a 

different amount of charge rQQ =′  ( r  is a constant) on the same conductor, the surface 

charges will maintain the spatial distribution (Fig. 9-1b) such that the potential of the entire 

conductor V ′  can still be constant. As a result, the new potential value becomes 

rV
R
rqV
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k ==′ ∑
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, in proportional to the deposited charge. The constant ratio of 

deposited charge to resulting potential is defined as the capacitance of a single conductor: 

V
QC =         (9.1) 

  

Fig. 9-1. A single-conductor capacitor deposited with an amount of charge (a) Q, and (b) 2Q, respectively. 

 

Example 9-1: Find the capacitance of a conducting sphere of radius b . 

Ans: Assume an amount of charge Q  is deposited on the conducting sphere. Due to 

spherical symmetry, the charges will distribute uniformly on the surface, creating an electric 
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field intensity (evaluated by Gauss’s law): 
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The surface potential is: ( )
b

QdRa
R

QabRV
b

RR
0

 

 2
0 44

)(
πεπε

=⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−== ∫∞

vv . By eq. (6.1), 
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QC 04πε== . 

 

If we connect two pieces of conductor by a dc voltage 12V , a proper amount of charge Q+  

will be deposited on one piece and Q−  will be deposited on the other, creating an electric 

field distribution and supporting a potential difference 12V  between them (Fig. 9-2). If the 

voltage changes to 1212 rVV =′ , the spatial distributions of surface charges and electric field 

remain unchanged but the total amount of charge changes to rQQ =′ . The constant ratio of 

deposited charge to voltage difference is defined as the capacitance of the conducting pair: 

12V
QC =         (9.2) 

 
Fig. 9-2. A two-conductor capacitance (after DKC). 

Note that the single-conductor capacitor can be regarded as a special case of two-conductor 

capacitor, where the second conductor with zero potential is located at infinity ( 012 −=VV ). 
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■ Evaluation procedures 

Three methods to evaluate the capacitance are summarized as follows: 

1) (1) Assume charges Q±  are deposited on the conductors. (2) Find E
v

 by Gauss’s law 

or vector integration [eq. (6.10)]. (3) Find 12V  ( Q∝ ) by line integral: ∫ ⋅−=
2 

1 12 ldEV
vv

. 

(4) Find C  by eq. (9.2), which is independent of Q . 

2) (1) Assume a potential difference 12VV =  between the two conductors. (2) Find the 

potential “distribution” )(rV v  by solving the boundary-value problem (Lesson 8). (3) 

Find E
v

 by )(rVE vv
−∇=  [eq. (6.11)]. (4) Find the free surface charge density )(rs

vρ  

of either conductor by the normal boundary condition 
0ε
ρ s

nE =  [eq. (7.4)]. (5) Find the 

total deposited free charge Q  by scalar surface integral ∫= S s dsrQ
 

)(vρ  ( V∝ ), where 

S  denotes the closed surface of one of the two conductors. (6) Find C  by eq. (9.2), 

which is independent of V . 

3) (1) Assume deposited charges Q±  or potential difference V  for the two conductors. (2) 

Find E
v

 and D
v

 by the previous methods. (3) Find the stored electrostatic energy eW  

( 2Q∝  or 2V ) by ∫ ′
⎟
⎠
⎞

⎜
⎝
⎛ ⋅=

Ve dvEDW
 2

1 vv
 [eq. (9.7)]. (4) Find C  by 

C
QWe 2

2

=  or 

2

2CVWe =  [eq. (9.8)], which is independent of Q  or V . 

 

Example 9-2: Find the capacitance of a parallel-plate capacitor (Fig. 9-3). 

Ans: (M1) Assume charges Q±  are deposited on the conducting plates. Because of planar 

symmetry, the charges are uniformly distributed on the plates. By Gauss’s law, 
S

QaE y ε
vv

−= . 

The potential difference between the top and bottom plates is: ( )
S

QddyaEV
d

y ε
=⋅−= ∫

 

0 12
vv

. By 

eq. (9.2), 
12V
QC = , ⇒ 



Electromagnetics                  P9-4 

Edited by: Shang-Da Yang 

d
SC ε=         (9.3) 

(M2) Assume the potentials of the top and bottom plates are 02 VV = , 01 =V , respectively. 

⇒ 01212 VVVV =−= . The solution to the corresponding boundary-value problem becomes: 

y
d
VrV 0)( =v . ⇒ 

d
VarVE y

0)( vvv
−=−∇= . On the top surface ( dy = ), 22 nn aEE vv

⋅=  
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00 =−⋅⎟
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⎛−= vv . By the normal boundary condition 

0ε
ρ s

nE = ,  
d
VEns

0
022

εερ == . 

⇒ 
d

SVSQ s
0

2
ερ == , 

d
S

V
QC ε==

0

, same as eq. (9.3). 

 

  
Fig. 9-3. A parallel-plate capacitor with two conducting plates of area S spaced by a dielectric 

material of thickness d and permittivity ε . Stray electric field lines exist at the edges. 

 

Example 9-3: Find the capacitance of a coaxial cable of length L  with inner and outer 

conducting radii of a  and b , respectively (Fig. 9-4). 

Ans: (M1) Assume charges Q±  are deposited on the conducting plates. Because of 

cylindrical symmetry, the charges are uniformly distributed on the two conductors. By 

Gauss’s law, 
rL

QaE r πε2
vv

= . The potential difference between the conducing core and shell is: 
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 12 πε
vv

. By eq. (9.2), 
12V
QC = , ⇒ 

( )ab
LC

ln
2πε

=         (9.4) 
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Fig. 9-4. A coaxial capacitor with inner conducting core of radius a and outer conducting shell of 

radius b, spaced by a dielectric material of permittivity ε . No stray electric field line exists. 

(After DKC.) 

 

<Comment> 

The capacitance is determined by: (1) The geometry of the conductors. E.g. 
d
S  in parallel 

plates, ( )ab
L

ln
 in coaxial cable. (2) The permittivity ε  of the dielectric material. 

 

 

9.2 Electrostatic Energy 

■ Electrostatic energy of assembling charges 

By eq. (6.13), the potential field due to a point charge 1Q  at a position 1P  (the origin) is: 

R
QRV

0

1

4
)(

πε
=  (assuming 0=V  at infinity). To bring a charge 2Q  from infinity to a 

position 2P  spaced from 1P  by a distance 12R , the amount of work to be done is 

120

21
222 4 R

QQVQW
πε

== , where )( 122 RVV =  denotes the potential at 2P  due to charge 1Q  

(Fig. 9-5a). 
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Fig. 9-5. A work W2 has to be done to assemble a system of two point charges Q1, Q2 spaced by a 

distance of R12. 

Similarly, the potential field due to a point charge 2Q  at a position 2P  (the origin) is: 

R
QRV

0

2

4
)(

πε
=′  (assuming 0=′V  at infinity). To bring a charge 1Q  from infinity to a 

position 1P  spaced from 2P  by a distance 12R , the amount of required work is still 

120

21
112 4 R

QQVQW
πε

== , where )( 121 RVV ′=  denotes the potential at 1P  due to charge 2Q  

(Fig. 9-5b). 

 

If we bring a third point charge 3Q  from infinity to a position 3P  spaced from charges 1P  

and 2P  by distances of 13R  and 23R , respectively; an additional work of: 
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has to be done. The total energy stored by the system of three charges is: 
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If kV  denotes the potential of charge kQ  at position kP  ( =k 1, 2, 3) due to the remaining 

charges, i.e. 
130

3

120

2
1 44 R

Q
R

QV
πεπε

+= , 
230

3

120

1
2 44 R

Q
R

QV
πεπε

+= , 
230

2

130

1
3 44 R

Q
R

QV
πεπε

+= , ⇒ 

( )3322113 2
1 VQVQVQW ++= . 

 



Electromagnetics                  P9-7 

Edited by: Shang-Da Yang 

The electrostatic energy stored by a system of N  discrete charges is thus: 

∑
=

=
N

k
kke VQW

12
1 , where ∑

≠

=
kj jk

j
k R

Q
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04
1
πε

     (9.5) 

For a system of continuous charge distribution with volume density )(rvρ  over a volume V ′ , 

eq. (9.5) is modified as: 

∫ ′
=

Ve dvrVrW
 

)()(
2
1 vvρ        (9.6) 

where )(rV v  represents the potential at source point rv  as a result of the “total” charge 

distribution. 

 

Example 9-4: Find the energy stored in a sphere of radius b  with uniform volume charge 

density ρ . 

Ans: By spherical symmetry, )(REaE R
vv

= . By Gauss’s law, 
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⇒ By eq. (9.6), 
0
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e == ∫  ( 5b∝  if ρ  is a constant). Since the 

total charge 
3

4 3ρπbQ = , ⇒ 
b

QWe
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=  ( b1∝  if Q  is a constant). 

Note that the potential outside the sphere ( bR > ) is: 
R
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However, this is not used in evaluating the stored energy for all the source points in eq. (9.6) 

are inside the sphere. 
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■ Electrostatic energy of electric fields 

In terms of real applications of electromagnetism (especially electromagnetic waves), sources 

are usually far away from the region of interest and only the resulting fields are given. It 

becomes more convenient to express the electric energy eW  by the electric field quantities 

E
v

 and D
v

 in the absence of the charge distribution ρ . 

(1) Substituting D
r

⋅∇=ρ  [eq. (7.8)] into eq. (9.6), ⇒ 

( )∫ ′
⋅∇=

Ve VdvDW
 2

1 v
, 

where V ′  is a volume containing all the source charges. 

(2) Substituting Vf =  and DA
vv

=  into the vector identity ( ) ( ) fAAfAf ∇⋅+⋅∇=⋅∇
vvv

, ⇒ 

( )∫∫ ′′
∇⋅−⋅∇=

VVe dvVDdvDVW
  2

1)(
2
1 vv

. 

(3) By divergence theorem [eq. (5.24)], ⇒ ∫∫ ′′
⋅=⋅∇

SV
sdDVdvDV

  
 )( vvv

, where S ′  is the 

closed surface of V ′ . By VE −∇=
v

 [eq. (6.11)], ⇒ ( ) ( )∫∫ ′′
⋅−=∇⋅

VV
dvEDdvVD

  

vvv
. ⇒ 

21 IIWe += , where ∫ ′
⋅=

S
sdDVI

 1  
2
1 vv

, ( )∫ ′
⋅=

V
dvEDI

 2 2
1 vv

. 

(4) One can choose S ′  as a spherical surface centered at the origin with an infinite radius 

∞→R , such that all the source charges are definitely enclosed. For an observation point (on 

S ′ ) far away from the source (at the origin), the potential 
R

V 1
∝ , and the field magnitude 

2
1
R

D ∝
v

. ⇒ 01114)()(
2
1 

2
1 2

2
2

 1 →∝⋅⋅∝⋅≈⋅= ∫ ′ R
R

RR
RRDRVsdDVI

S
π

vvv
, 2IWe = . ⇒ 

∫ ′
=

V ee dvrwW
 

)(v ,  EDwe

vv
⋅=

2
1  (J/m3)     (9.7) 

where V ′  has to cover everywhere with nonzero electric field, and ew  represents the 

electrostatic energy density. However, the physical justification has not been found to 

localized energy with an electric field. 
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Example 9-5: Find the energy stored in a parallel-plate capacitor with two conducting plates 

of area S spaced by a dielectric material of thickness d and permittivity ε  (Fig. 9-3) and 

biased by a dc voltage V . 

Ans: According to the solution to Example 9-2, the electric field between the plates is 

uniform: 
d
VaE y

vv
−= , ED

vv
ε= . By eq. (9.7), the energy density is: 

2

2
1

⎟
⎠
⎞

⎜
⎝
⎛=

d
Vwe ε . The total 

stored energy (assuming no field exists outside the capacitor) is: 
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⎠
⎞

⎜
⎝
⎛= εε . 

By eq’s (9.2), (9.3), ⇒ 
d
S

V
QC ε== , we got: 

QV
C

QCVWe 2
1

22
1 2

2 ===       (9.8) 

Eq. (9.8) is useful in evaluating electrostatic energy stored in general capacitors. 

 

Example 9-6: Find the capacitance of a coaxial cable (Example 9-3) by eq. (9.8). 

Ans: (M3) Assume charges Q±  are deposited on the conducting plates. Because of 

cylindrical symmetry, we can apply Gauss’s law to get: 
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2

πεπε
π
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ε . By eq. (9.8), ⇒  

( )ab
L

W
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e ln
2

2

2 πε
== , 

same as eq. (9.4). 

 

Example 9-7: Find the energy stored in a sphere of radius b with uniform volume charge 

density ρ (Example 9-4) by eq. (9.7). 

Ans: By spherical symmetry, )(REaE R
vv

= . By Gauss’s law, 
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The total stored energy is: 

b
QbWWW eee

0
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21 20
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15
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πεε
πρ

==+= , 

equal to that derived by eq. (9.6). The corresponding “capacitance” can be evaluated by eq. 

(9.8): 
3

10
2

0
2 b

W
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e
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== . 

 

Example 9-8: Find the energy stored in a conducting sphere of radius b  with total charge 

Q  by eq. (9.7). Find the corresponding capacitance (Example 9-1) by eq. (9.8). 

Ans: By spherical symmetry and Gauss’s law, 
⎪⎩

⎪
⎨

⎧ ≥
=

otherwise ,0
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∞
. 

The corresponding capacitance can be evaluated by eq. (9.8): b
W
QC

e
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4
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πε== . 

 


