

Lesson 9 Capacitance, Electrostatic Energy

楊尚達 Shang-Da Yang

Institute of Photonics Technologies
Department of Electrical Engineering
National Tsing Hua University, Taiwan

Outline

- Capacitance
- Electrostatic energy

Sec. 9-1 Capacitance

- 1. Single-conductor capacitors
- 2. Two-conductor capacitors
- 3. Methods to evaluate capacitance

Single-conductor capacitor-1

Single-conductor capacitor-2

$$Q = \sum_{k=1}^{n} q_k, \quad V = \frac{1}{4\pi\varepsilon_0} \sum_{k=1}^{n} \frac{q_k}{R_k}$$

On the surface

Inside the conductor

Single-conductor capacitor-3

$$Q' = 2Q, \quad \Rightarrow V' = \frac{1}{4\pi\varepsilon_0} \sum_{k=1}^n \frac{2q_k}{R_k} = 2V$$

Single-conductor capacitor-4

The constant ratio of the deposited charge to the resulting potential is defined as the capacitance of a single conductor.

$$C \equiv \frac{Q}{V}$$

Example 9-1: Conducting sphere (1)

Find the capacitance of a conducting sphere of radius b

Assume charge Q is deposited

Spherical symmetry, $\Rightarrow \rho_s(\vec{r})$

is uniformly distributed, ⇒

$$\vec{E} = \begin{cases} \vec{a}_R \frac{Q}{4\pi\varepsilon_0 R^2}, & \text{if } R \ge b\\ 0, & \text{if } 0 < R < b \end{cases}$$

Example 9-1: Conducting sphere (2)

The surface potential is:

Two-conductor capacitor-1

$$V_{12} \to \pm Q \to \vec{E} \to -\int_1^2 \vec{E} \cdot d\vec{l} = V_{12}$$
 any path

Two-conductor capacitor-2

$$V'_{12} = rV_{12} \rightarrow \pm rQ \rightarrow r\vec{E}$$

The constant ratio of the deposited charge to the voltage difference is defined as the capacitance of the conducting pair:

$$C \equiv \frac{Q}{V_{12}}$$

Comment

Evaluation of capacitance (Method 1)

- 1. Assume charges $(\pm Q)$ are deposited
- 2. Find \vec{E} by Gauss's law or

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \oint_{S_1 + S_2} \vec{a}_R \frac{\rho_s(\vec{r}')}{R(\vec{r}, \vec{r}')^2} ds'$$

- 3. Find $V_{12}(\underline{\propto Q})$ by $V_{12} = -\int_1^2 \vec{E} \cdot d\vec{l}$
- 4. Find C by $C = \frac{Q}{V_{12}}$, independent of Q

Evaluation of capacitance-reference figure

Evaluation of capacitance (Method 2)

- 1. Assume V_{12} between the conductors
- 2. Find $V(\vec{r})$ by solving $\nabla^2 V = 0$ with BC
- 3. Find \vec{E} by $\vec{E} = -\nabla V(\vec{r})$
- 4. Find $\rho_s(\vec{r})$ of either conductor by $E_n = \frac{\rho_s}{\varepsilon_0}$
- 5. Find deposited Q by $Q = \oint_S \rho_s(\vec{r}) ds(\underline{\propto V_{12}})$
- 6. Find C by $C = \frac{Q}{V_{12}}$, independent of V_{12}

Evaluation of capacitance (Method 3)

- 1. Assume $\pm Q$ or V for the two conductors
- 2. Find \vec{E} and \vec{D} by M1, M2
- 3. Find the stored energy

$$W_e = \int_{V'} \left(\frac{1}{2} \vec{D} \cdot \vec{E} \right) dv$$
, which is $\propto Q^2$ or V^2

4. Find
$$C$$
 by $W_e = \frac{Q^2}{2C}$ or $W_e = \frac{CV^2}{2}$

Ŋė.

Example 9-2: Parallel-plate capacitor (1)

- 1. Assume charges $\pm Q$ are deposited
- 2. By Gauss's law (planar sym.): $\vec{E} = -\vec{a}_y \frac{Q}{\varepsilon S}$

Example 9-2: Parallel-plate capacitor (2)

3.
$$V_{12} = -\int_0^d \vec{E} \cdot (\vec{a}_y dy) = \frac{Qd}{\varepsilon S}$$

$$4. C = \frac{Q}{V_{12}} = \varepsilon \frac{S}{d}$$

Example 9-3: Coaxial cable capacitor (1)

- 1. Assume charges $\pm Q$ are deposited
- 2. By Gauss's law (cylindrical sym.): $\vec{E} = \vec{a}_r \frac{Q}{2\pi \& rL}$

Example 9-3: Coaxial cable capacitor (2)

3.
$$V_{12} = -\int_{b}^{a} \vec{E} \cdot (\vec{a}_{r} dr) = \frac{Q}{2\pi \varepsilon L} \ln\left(\frac{b}{a}\right)$$

4.
$$C = \frac{Q}{V_{12}} = \frac{2\pi \varepsilon L}{\ln(b/a)}$$

Now you know how to evaluate the capacitance per unit length of coaxial TX lines!

$$\frac{C}{L} = \frac{2\pi\varepsilon}{\ln(b/a)}$$

Sec. 9-2 Electrostatic Energy

- 1. Energy of charges
- 2. Energy of fields

Energy of two charges-1

The work done to move Q_2 from ∞ to P_2 against V(R) due to Q_1 is:

$$W_2 = Q_2 V_2 = \frac{Q_1 Q_2}{4\pi \varepsilon_0 R_{12}}$$

Energy of two charges-2

The work done to move Q_1 from ∞ to P_1 against V'(R) due to Q_2 is:

$$V'(R) = \frac{Q_2}{4\pi\varepsilon_0 R}$$

$$V'(R)$$
 due to Q_2 is: $4\pi \mathcal{E}_0 R$

$$W_2 = Q_1 V_1 = \frac{Q_1 Q_2}{4\pi \mathcal{E}_0 R_{12}}$$

$$V_1 = V'(R_{12})$$

$$P_1 \qquad P_2 \qquad Q_2$$

$$Q_1 \qquad P_2 \qquad Q_2$$

Energy of two charges-3

The electrostatic energy stored by a system of two charges Q_1 - Q_2 is:

$$W_{2} = Q_{1}V_{1} = Q_{2}V_{2} = \frac{1}{2}(Q_{1}V_{1} + Q_{2}V_{2})$$

Potential of Q_1 Potential of Q_2 at P_1 due to Q_2 at P_2 due to Q_1

Energy of three charges-1

The extra work done to move Q_3 from ∞ to P_3 against V(R), V'(R) due to Q_1 , Q_2 is:

$$\Delta W = Q_3 V_3$$

$$= Q_3 \left(\frac{Q_1}{4\pi \varepsilon_0 R_{13}} + \frac{Q_2}{4\pi \varepsilon_0 R_{23}} \right)_{P_1}$$

$$V_3 = V(R_{13}) + V'(R_{23})$$

Energy of three charges-2

The electrostatic energy stored by a system of three charges Q_1 - Q_2 - Q_3 is:

$$W_{3} = W_{2} + \Delta W = \frac{1}{4\pi\varepsilon_{0}} \left(\frac{Q_{1}Q_{2}}{R_{12}} + \frac{Q_{1}Q_{3}}{R_{13}} + \frac{Q_{2}Q_{3}}{R_{23}} \right)$$

Energy of three charges-3

 V_k denotes the potential of charge Q_k at position P_k (k = 1, 2, 3) due to the remaining charges, i.e.,

$$V_{1} = \frac{Q_{2}}{4\pi\varepsilon_{0}R_{12}} + \frac{Q_{3}}{4\pi\varepsilon_{0}R_{13}}, V_{2} = \frac{Q_{1}}{4\pi\varepsilon_{0}R_{12}} + \frac{Q_{3}}{4\pi\varepsilon_{0}R_{23}},$$

$$V_3 = \frac{Q_1}{4\pi\varepsilon_0 R_{13}} + \frac{Q_2}{4\pi\varepsilon_0 R_{23}}$$

$$\Rightarrow W_3 = \frac{1}{2} (Q_1 V_1 + Q_2 V_2 + Q_3 V_3)$$

Energy of *N* charges

The electrostatic energy stored by a system of N discrete charges Q_1 - Q_2 -...- Q_N is:

$$W_e = \frac{1}{2} \sum_{k=1}^N Q_k V_k$$

$$V_k = \frac{1}{4\pi\varepsilon_0} \sum_{j \neq k} \frac{Q_j}{R_{jk}}$$

Energy of continuous charge distributions

The electrostatic energy stored by a system of continuous charge distribution $\rho(\vec{r})$ over V' is:

$$W_e = \frac{1}{2} \int_{V'} \rho(\vec{r}) V(\vec{r}) dv$$

Potential at source point \vec{r} due to the total charge distribution

Example 9-4: Sphere of uniform charge density (1)

Find the energy stored in a sphere of radius b with uniform volume charge density ρ

Spherical symmetry, ⇒

$$\vec{E} = \vec{a}_R E(R)$$

By Gauss's law, ⇒

$$\vec{E} = \begin{cases} \vec{a}_R \frac{\rho R}{3\varepsilon_0}, & \text{if } 0 < R < R \\ \vec{a}_R \frac{\rho b^3}{3\varepsilon_0 R^2}, & \text{if } R \ge b \end{cases}$$

Example 9-4: Sphere of uniform charge density (2)

For any point *P* inside the sphere (0 < R < b)

Example 9-4: Sphere of uniform charge density (3)

By
$$W_e = \frac{1}{2} \int_{V'} \rho(\vec{r}) V(\vec{r}) dv$$

$$W_e = \frac{1}{2} \int_0^b \rho V(R) (4\pi R^2 dR)$$

$$= \frac{4\pi\rho^2 b^5}{15\varepsilon_0} \propto b^5 \text{ (if } \rho = \text{constant)}$$

Total charge is:
$$Q = \frac{4\pi b^3 \rho}{3}$$

$$W_e = \frac{3Q^2}{20\pi\varepsilon_0 b} \propto \frac{1}{b} \text{ (if } Q = \text{constant)}$$

Energy of electric fields-1

In real applications (especially electromagnetic waves), sources are usually far away from the region of interest, only the fields are given.

Energy of electric fields-2

(1)
$$W_{e} = \frac{1}{2} \int_{V'} \rho(\vec{r}) V(\vec{r}) dv = \frac{1}{2} \int_{V'} \left(\nabla \cdot \overrightarrow{D} \right) V dv$$
$$\rho = \nabla \cdot \vec{D}$$
$$\vec{A} f$$

contain all the source

charges V^{\prime}

By vector identity:

$$\nabla \cdot (f\vec{A}) = f(\nabla \cdot \vec{A}) + \vec{A} \cdot \nabla f$$
(2)
$$W_e = \frac{1}{2} \int_{V'} \nabla \cdot (V\vec{D}) dv - \frac{1}{2} \int_{V'} \vec{D} \cdot (\nabla V) dv$$

Energy of electric fields-3

$$\therefore \oint_{S} \vec{A} \cdot d\vec{s} = \int_{V} (\nabla \cdot \vec{A}) dv, \implies \int_{V'} \nabla \cdot (V\vec{D}) dv = \oint_{S'} V\vec{D} \cdot d\vec{s}$$

$$:: \vec{E} = -\nabla V, \implies \int_{V'} \vec{D} \cdot (\nabla V) dv = -\int_{V'} (\vec{D} \cdot \vec{E}) dv$$

(3)
$$W_{e} = \frac{1}{2} \oint_{S'} V \vec{D} \cdot d\vec{s} + \frac{1}{2} \int_{V'} (\vec{D} \cdot \vec{E}) dV$$

$$I_{1} \qquad I_{2}$$

Energy of electric fields-5

$$I_{1} = \frac{1}{2} \oint_{S'} V \vec{D} \cdot d\vec{s} \approx \frac{1}{2} V(R) |\vec{D}(R)| \cdot 4\pi R^{2}$$

$$\propto \frac{1}{R} \cdot \frac{1}{R^{2}} \cdot R^{2} \propto \frac{1}{R} \to 0$$

$$\Rightarrow W_e = I_2 = \int_{V'} \underline{w_e(\vec{r})} dv$$

$$\boxed{\frac{1}{2} \vec{D} \cdot \vec{E} (J/m^3)} \quad \text{...energy density}$$

Ŋ.

Energy of electric fields-6

W

Example 9-5: Parallel-plate capacitor (1)

Find the stored electrostatic energy of:

Planar symmetry, \Rightarrow uniform E-field:

$$\vec{E} = -\vec{a}_y \frac{V}{d}, \quad \vec{D} = \varepsilon \vec{E}$$

Example 9-5: Parallel-plate capacitor (2)

Energy density:

$$w_e = \frac{1}{2}\vec{D} \cdot \vec{E} = \frac{1}{2} \varepsilon \left| \vec{E} \right|^2 = \frac{1}{2} \varepsilon \left(\frac{V}{d} \right)^2$$

Total stored energy:

$$C = \frac{Q}{V}$$

$$W_e = \frac{1}{2} \varepsilon \left(\frac{V}{d}\right)^2 \cdot Sd = \frac{1}{2} \left(\varepsilon \frac{S}{d}\right) V^2$$

$$\Rightarrow W_e = \frac{1}{2}CV^2 = \frac{Q^2}{2C} = \frac{1}{2}QV$$

Example 9-6: Coaxial cable capacitor (1)

Find the capacitance of:

- 1. Assume charges $\pm Q$ are deposited
- 2. By Gauss's law (cylindrical sym.): $\vec{E} = \vec{a}_r \frac{Q}{2\pi \varepsilon rL}$

Example 9-6: Coaxial cable capacitor (2)

Instead of evaluating V by line integral of \bar{E} ,

3.
$$w_e = \frac{1}{2}\vec{D}\cdot\vec{E} = \frac{1}{2}\varepsilon|\vec{E}|^2$$

4.
$$W_e = \frac{1}{2} \varepsilon \left(\left| \vec{E} \right|^2 dv \right) = \frac{1}{2} \varepsilon \int_a^b \left(\frac{Q}{2\pi \varepsilon Lr} \right)^2 \left(2\pi r dr L \right)$$

$$= \frac{Q^2}{4\pi \varepsilon L} \left(\int_a^b \frac{dr}{r} \right) = \frac{Q^2}{4\pi \varepsilon L} \ln \left(\frac{b}{a} \right)$$

5.
$$C = \frac{Q^2}{2W_e} = \frac{2\pi \varepsilon L}{\ln(b/a)}$$

Example 9-7: Sphere of uniform charge density (1)

Find the energy stored in a sphere of radius b with uniform volume charge density ρ

Spherical symmetry, ⇒

$$\vec{E} = \vec{a}_R E(R)$$

By Gauss's law, ⇒

$$\vec{E} = \begin{cases} \vec{a}_R \frac{\rho R}{3\varepsilon_0}, & \text{if } 0 < R < R \\ \vec{a}_R \frac{\rho b^3}{3\varepsilon_0 R^2}, & \text{if } R \ge b \end{cases}$$

Example 9-7: Sphere of uniform charge density (2)

Instead of evaluating V by line integral of \bar{E} , and arriving at $W_e = \frac{1}{2} \int_{V'} \rho(\vec{r}) V(\vec{r}) dv$

For
$$0 < R < b$$
: $\left| \vec{E} \right|^2$

$$W_{e1} = \int_0^b \frac{1}{2} \varepsilon_0 \left(\frac{\rho R}{3\varepsilon_0} \right)^2 \frac{dV}{(4\pi R^2 dR)}$$

$$= \frac{2\pi\rho^2}{9\varepsilon_0} \left(\int_0^b R^4 dR \right) = \frac{2\pi\rho^2 b^5}{45\varepsilon_0}$$

Example 9-7: Sphere of uniform charge density (3)

For
$$R > b$$
:
$$\begin{aligned}
|\vec{E}|^2 \\
W_{e2} &= \int_b^\infty \frac{1}{2} \varepsilon_0 \left(\frac{\rho b^3}{3\varepsilon R^2} \right)^2 \frac{dV}{(4\pi R^2 dR)} \\
&= \frac{2\pi \rho^2 b^6}{9\varepsilon_0} \left(\int_b^\infty \frac{1}{R^2} dR \right) = \frac{2\pi \rho^2 b^5}{9\varepsilon_0}
\end{aligned}$$

$$W_{e} = W_{e1} + W_{e2} = \frac{4\pi\rho^{2}b^{5}}{15\varepsilon_{0}} = \frac{3Q^{2}}{20\pi\varepsilon_{0}b}$$
(1:5)

Example 9-7: Sphere of uniform charge density (4)

The corresponding "capacitance" is:

$$C = \frac{Q^2}{2W_e} = \frac{10\pi\varepsilon_0 b}{3}$$

Example 9-8: Conducting sphere (1)

Find the stored energy and the capacitance of a conducting sphere of total charge *Q*

Spherical symmetry, $\Rightarrow \rho_s(\vec{r})$ is uniformly distributed, \Rightarrow

$$\vec{E} = \begin{cases} \vec{a}_R \frac{Q}{4\pi\varepsilon_0 R^2}, & \text{if } R \ge b \\ 0, & \text{otherwise} \end{cases}$$

Example 9-8: Conducting sphere (2)

Instead of evaluating V by line integral of \bar{E} , and arriving at $W_e = \frac{1}{2} \int_{V'} \rho(\vec{r}) V(\vec{r}) dv$

For
$$R > b$$
:
$$|\vec{E}|^{2}$$

$$W_{e} = \int_{b}^{\infty} \frac{1}{2} \varepsilon_{0} \left(\frac{Q}{4\pi\varepsilon_{0}R^{2}}\right)^{2} \frac{dV}{(4\pi R^{2}dR)}$$

$$= \frac{Q^{2}}{8\pi\varepsilon_{0}b} \implies C = \frac{Q^{2}}{2W_{e}} = \frac{4\pi\varepsilon_{0}b}{4\pi\varepsilon_{0}b}$$