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Lesson 08 Boundary-value Problems 

 

■ Introduction 

In Lesson 6 and Lesson 7, we have studied how to determine the electric field from the 

charge distribution. In many applications, however, we only know the “potentials of some 

conducting bodies” (boundary values) and it is difficult to evaluate the free charge 

distributions on the conducting surfaces. An alternative approach determines the potential 

distribution )(rV v  by solving a differential equation with specified boundary values, then 

derives the electric field E
v

 and surface charge distributions )(rs
vρ  by gradient operation 

[eq. (6.11)] and the normal boundary condition [eq. (7.15)], respectively. 

 

 

8.1 Poisson’s and Laplace’s Equations 

■ Derivation 

In a linear, homogeneous, and isotropic medium, ED
vv

ε=  [eq. (7.12)], where the 

permittivity of the medium ε  is a scalar constant [eq. (7.13)]. The fundamental postulate of 

electrostatics ρ=⋅∇ D
r

 [eq. (7.8)] becomes ( ) ρε =⋅∇=⋅∇ ED
vr

, ⇒ 
ε
ρ

=⋅∇ E
v

. By 

VE −∇=
v

 [eq. (6.11)], ⇒ ( )
ε
ρ

=∇⋅−∇=⋅∇ VE
v

. By the definition of scalar Laplacian 

( )VV ∇⋅∇≡∇ 2  [eq. (5.24)], we arrive at the Poisson’s equation: 

 
ε
ρ

−=∇ V2  (8.1)

In the regions of no “free” charge, eq. (8.1) is simplified to Laplace’s equation: 

 02 =∇ V  (8.2)
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<Comment> 

1) Eq. (8.2) remains applicable for a charge-free region with “conducting boundaries”, 

where free surface charges may exist. 

2) By the physical meaning of scalar Laplacian operator (Lesson 5), eq. (8.2) implies that 

the potential at any point )(rV v  is equal to the average of its neighboring potential values 

)(rV v  (dynamic equilibrium). 

 

 

■ Uniqueness theorem 

A function satisfying both the Poisson’s equation and the given boundary conditions (BCs) is 

a unique solution, which is irrespective of the method by which the solution is obtained (even 

by guessing). 

 

 

8.2 Boundary-value Problems 

■ One-dimensional example in Cartesian coordinates 

Example 8-1: Consider two parallel conducting plates separated by a dielectric material of 

permittivity ε  and thickness d . The bottom plate ( 0=y ) and top plate ( dy = ) are 

maintained at potentials 0 and 0V , respectively. Find V , E
v

, and sρ  on the two plates. 

 
Fig. 8-1. Two parallel conducting plates spaced by a dielectric layer and biased by a dc voltage 

(after DKC). 
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Ans: (1) Eq. (8.2) is good for the dielectric region dy <<0  where 0=ρ . Assume the 

plates are infinitely large (planar symmetry), ⇒ )(yVV = , 02

2
2 ==∇

dy
VdV , which is an 

ordinary differential equation (ODE). The two BCs are: { }0)(  ,0)0( VdVV == . ⇒ 

y
d
VyV 0)( = . (2) 

d
Va

dy
dVaVE yy

0vvv
−=−=−∇= , which is uniform. (3) For the upper plate, 

medium 1 and 2 represent the conductor and dielectric material, respectively. ⇒ 01 =D
v

, 

d
VaED y

0
22

εε vvv
−== , yn aa vv =2 . By eq. (7.15), ⇒ 

d
V

d
Vaa yysu

000 εερ =⎟
⎠
⎞

⎜
⎝
⎛ +⋅= vv . For the 

lower plate, medium 1 and 2 represent the dielectric material and conductor, respectively. ⇒ 

d
VaED y

0
11

εε vvv
−== , 02 =D

v
, yn aa vv =2 . By eq. (7.15), ⇒ 

d
V

d
Vaa yysl

00 0 εερ −=⎟
⎠
⎞

⎜
⎝
⎛ −−⋅= vv . 

 

<Comment> 

The assumption of infinitely large plates also implies uniform surface charges ρρ ±=s . By 

Gauss’s law, ⇒ ρyaD vv
−= , 

ε
ρ

yaE vv
−= , yyV

ε
ρ

=)( . By 0)( VdV = , ⇒ 
d
V0ερ = . We 

derive the same results. 

 

 

■ One-dimensional example in cylindrical coordinates 

Example 8-2: Consider a long coaxial cable with inner conductor of radius a  (maintained at 

potential 0V ), and outer conductor of radius b  (grounded), respectively. Find the potential 

distribution )(rV v  for the region in between. 
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Fig. 8-1. (a) Cross-sectional view, and (b) the corresponding potential V(r) of a long coaxial cable. 

Ans: By cylindrical symmetry, ⇒ )(rVV = , 012 =⎟
⎠
⎞

⎜
⎝
⎛=∇

dr
dVr

dr
d

r
V  (DKC, inside of back 

cover), which is an ODE. The two BCs are: { }0)(  ,0)( VaVbV == . Let 
dr
dVrU =)( , ⇒ 

0=+
r
U

dr
dU , 

rrU
rU 1
)(
)(

−=
′

. Integration for both sides leads to: [ ] ( ) crrU ′+= −1ln)(ln , 

r
crU =)( . By another integration, 21 ln)( CrCrV += . By the BCs: ( )ab

VC
ln

0
1

−
= , 

( )ab
bVC

ln
ln0

2 = , ⇒ ⎟
⎠
⎞

⎜
⎝
⎛=

r
b

ab
VrV ln

)ln(
)( 0 . 

 

<Comment> 

The cylindrical symmetry also implies uniform surface charges ρρ ±=s . By Gauss’ law, ⇒ 

r
aD r π

ρ
2

vv
= , 

r
aE r πε

ρ
2

vv
= , ⎟

⎠
⎞

⎜
⎝
⎛−=′⋅′−= ∫ a

rVrdarEVrV
r

a r ln
2

)()( 0

 

 0 πε
ρvv

. By BC 0)( =bV , 

⇒ ⎟
⎠
⎞

⎜
⎝
⎛=

a
bV ln

20 πε
ρ , ⎟

⎠
⎞

⎜
⎝
⎛=

r
b

ab
VrV ln

)ln(
)( 0 . We derive the same result. 

 


