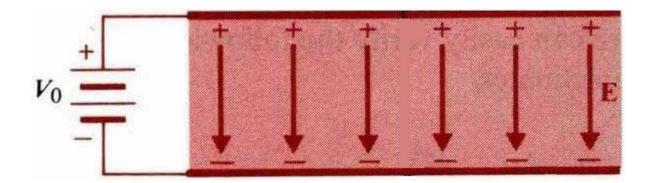


楊尚達 Shang-Da Yang

Institute of Photonics Technologies Department of Electrical Engineering National Tsing Hua University, Taiwan

Introduction

- In Lesson 6 and Lesson 7, we determined the E-field from charge distribution $\rho(\vec{r})$ (Gauss's law, integral of contribution from elementary charges).
- In practice, we might only know the electric potentials of some conducting bodies. It is difficult to evaluate the distribution of free charges $\rho_s(\vec{r})$ on the conducting surfaces.



Derivation

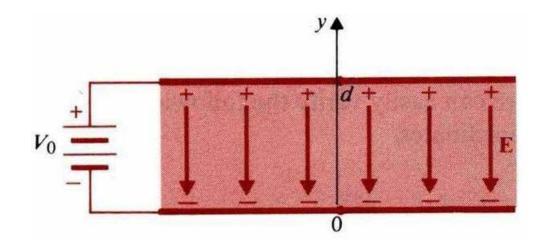
- In a simple (linear, homogeneous, isotropic) medium, $\vec{D} = \varepsilon \vec{E}$, where ε is a scalar constant.
- Fundamental postulate:

$$\nabla \cdot \vec{D} = \rho, \quad \Rightarrow \nabla \cdot \left(\varepsilon \vec{E}\right) = \varepsilon \left(\nabla \cdot \vec{E}\right) = \rho, \quad \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon}$$

- By the relation $\vec{E} = -\nabla V$, $\Rightarrow \nabla \cdot \vec{E} = -\nabla \cdot (\nabla V) = \frac{\rho}{\varepsilon}$
- By the definition of scalar Laplacian $\nabla^2 V \equiv \nabla \cdot (\nabla V)$

In charge-
free regions
$$\sqrt{\begin{array}{c} \nabla^2 V = -\frac{\rho}{\varepsilon} \\ \nabla^2 V = 0 \end{array}}$$
 ...Poisson's equation ...Laplace's equation

Example 8-1: Parallel-plate capacitor



Since free charges only exist at $y = 0^+$, d^- ,

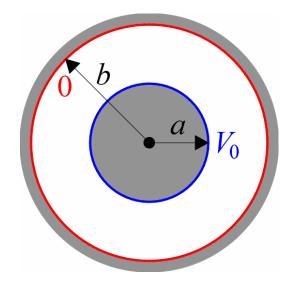
 $\Rightarrow \nabla^2 V = 0$ is applicable for the dielectric region 0 < y < d

Assume infinite plates, \Rightarrow planar symmetry, $\Rightarrow V = V(y)$

$$\nabla^2 V = \frac{d^2 V}{dy^2} = 0, \text{ with 2 BCs: } \left\{ V(0) = 0, V(d) = V_0 \right\}$$

The solution is: $V(y) = \frac{V_0}{d} y, \quad \vec{E} = -\nabla V = -\vec{a}_y \frac{dV}{dy} = \left[-\vec{a}_y \frac{V_0}{d} \right]$

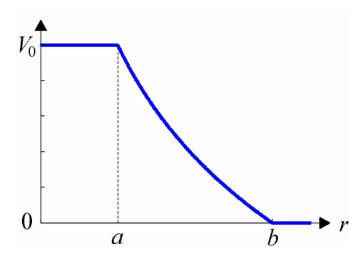
Example 8-2: Long coaxial cable



Cylindrical symmetry, $\Rightarrow V = V(r)$

$$\nabla^2 V = \frac{1}{r} \frac{d}{dr} \left(r \frac{dV}{dr} \right) = 0$$

with 2 BCs: $\left\{ V(b) = 0, V(a) = V_0 \right\}$



The solution is:

$$V(r) = \frac{V_0}{\ln(b/a)} \ln\left(\frac{b}{r}\right)$$