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Lesson 07 Electrostatics in Materials 

 

■ Introduction 

Materials consist of atoms, which are made up of nuclei (positive charges) and electrons 

(negative charges). As a result, the “total” electric field must be modified in the presence of 

materials. We usually classify materials into three types: 

1) Conductors: The electrons in the outermost shells of the atoms are very loosely held and 

can freely migrate among atoms due to thermal excitation at room temperatures. These 

electrons are “shared” by all atoms. 

2) Dielectrics: All electrons are confined within the “inner” shells of atoms, and can hardly 

migrate even by applying a strong excitation. 

3) Semiconductors: Outermost electrons are “moderately” confined, which may not migrate 

due to thermal excitation but become movable when applying an external electric field. 

Fig. 7-1. (a) Energy levels and bands. (b) Band diagrams of insulator, semiconductor, and metal. 

In terms of quantum theory, the electrons of an atom can only “stay” at discrete energy levels 

(Fig. 7-1a, left). When a large number of atoms aggregate in ordered manner (crystalline 

solid), each energy level splits into densely spaced levels (energy “band”). The allowed 

energy bands can be overlapped or separated by forbidden energy gap (Fig. 7-1a, right). 

Electric characteristics of materials depend on the band structure and how they are filled by 

the electrons at the temperature of 0 K (Fig. 7-1b): 
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1) Conductors: Bands are overlapped, or the conduction band is partially filled. 

2) Dielectrics: Energy gap is large, and the conduction band is empty. 

3) Semiconductors: Energy gap is small, and the conduction band is empty. 

In this lesson, we will discuss the field behaviors both inside some material and on the 

interface of different materials. 

 

 

7.1 Static Electric Field in the Presence of Conductors 

■ Charge and electric field inside a conductor 

Assume that some positive (or negative) charges are introduced in the interior of a conductor. 

Initially an electric field will be set up, which will push the “free” charges away from one 

another by Coulomb’s force and modify the electric field distribution by turns. This 

charge-field interaction process will continue until: (1) all the charges reach the conductor 

surface (no way to leave): 

0=ρ ,        (7.1) 

and (2) the surface charges redistribute themselves such that no electric field exists inside the 

conductor: 

0=E
v

        (7.2) 

Eq. (7.2) can be justified by: 

1) If 0≠E
v

 somewhere inside the conductor, the electric potential )(rV v  is non-uniform. 

This will result in a contradiction that work has to be done to move “free” charges. 

2) The free charge distribution that leads to 0=E
v

 actually corresponds to the lowest 

system energy, i.e., a state of equilibrium (Lesson 9). 

For good conductors like copper, the time required to reach the equilibrium is only in the 

order of 10-19 sec (Lesson 10). 
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■ Air-conductor interface 

Since the charges on the conductor surface will not be at rest if there is tangential electric 

field component, the surface electric field only has normal component in the equilibrium. 

Rigorous boundary conditions (BCs) are derived by applying eq’s (6.3), (6.4) with respect to 

the differential contour “abcda” and the thin pill box (Fig. 7-2) across the air-conductor 

interface, respectively. 

 
Fig. 7-2. Differential contour and pill box used to derive BCs on the air-conductor interface (after DKC). 

1) Tangential BC: By eq’s (6.4), (7.2), 00     
0 

=Δ⋅+Δ⋅=⋅
→Δ∫ wwEldE t

habcda

vv
, ⇒ 

0=tE         (7.3) 

2) Normal BC: BC: By eq’s (6.3), (7.1-3), 
00 

 
ε

ρ S
SEsdE s

n
hS

Δ
=Δ⋅=⋅

→Δ∫
vv

, ⇒ 

0ε
ρ s

nE = ,        (7.4) 

where nE  is in the normal direction from the conductor to the air. 

 

Example 7-1: Consider a point charge Q+  located at the center of a spherical conducting 

shell of finite thickness (Fig. 7-3a). Find E
v

, V  inside and outside the shell. 
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Fig. 7-3. (a) The geometry of a conducting sphere. The corresponding (b) radial components of 

E
v

 (dashed), and (c) electric potential V . 

Ans: Because of the spherical symmetry of the source, we have )(REaE RR
vv

=  everywhere, 

and the Gaussian surfaces are concentric spherical surfaces centered at the origin. 

(1) For iRR < : ( )
0

2

 
4)( 

3 ε
π QRREsdE RS

=⋅=⋅∫
vv

, ⇒ 2
04

)(
R

QRER πε
= . 

(2) For oi RRR << : By eq. (7.2), 0=E
v

, ⇒ 0 
2 

=⋅∫S
sdE vv

 for any enclosed surface 2S  

inside the shell. This implies that “free” charges of Q−  must be induced on the inner 

surface of the shell. By the conservation of charges and eq. (7.1), free charges of Q+  must 

be induced on the outer surface of the shell. 

(3) For oRR > : The total charge enclosed by a Gaussian surface 1S  is Q+ , ⇒ 

2
04

)(
R

QRER πε
= . 

The curve of )(REE R=
v

 is shown in Fig. 7-3b. One can derive the electric potential 

distribution )(RV  by line integral of E
v

 (Fig. 7-3c). 
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7.2 Static Electric Field in the Presence of Dielectrics 

■ Concept of induced dipoles 

A dielectric molecule could be non-polar (e.g., H2, CH4) or polar (e.g., H2O, HCl, NH3, O3), 

depending on whether there is nonzero electric dipole moment [eq. (6.17)]. However, a 

dielectric bulk made up of a large number of randomly oriented molecules (polar or non-polar) 

typically has no macroscopic dipole moment in the absence of external electric field. 

 

When an electric field is applied, the “bound” charges of the dielectrics cannot freely migrate 

to the surface. Instead, (1) each non-polar molecule is polarized for the positively charged 

nuclei and negatively charged electrons are slightly displaced in opposite directions 

(distortion of electron cloud). (2) Most of the individual dipole moments (vectors) are aligned 

in the same direction due to the electric torque. In either case, a macroscopic dipole moment 

emerges. 

 
Fig. 7-4. A cross section of a polarized dielectric medium (after DKC). 

Although an electric dipole is neutral in ensemble, it provides nonzero potential and electric 

field [eq’s (6.18), (6.16)], which will modify the “total” field inside and outside dielectrics. 

 

 

■ Polarization vector and equivalent charge densities 

To analyze the effect of induced dipoles, we define a (microscopic) polarization vector P
v

 as 
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the volume density of electric dipole moment: 

v
p

P k

v Δ
≡ ∑

→Δ

v
v

0
lim        (7.5) 

where kpv  denotes the kth dipole moment inside a differential volume vΔ . 

 

If the polarization vector P
v

 is inhomogeneous (i.e., varies with position) somewhere, there 

must exist net (bound) polarization charge at that position. This phenomenon can be 

illustrated in two cases. 

Fig. 7-5. (a) The model to deduce the polarization surface charge density. (b) Net polarization 

volume charge exists where the polarization vector P
v

 is inhomogeneous. 

1) The polarization vector P
v

 is discontinuous on the air-dielectric interface, where there 

must exist net polarization charge (Fig. 7-5a). To quantitatively model this phenomenon, 

consider a differential parallelepiped V  bounded by a closed surface bS , where the 

dipole moment of each molecule is dqp
vv = . The top surface of bS  has a unit outward 

normal vector nav  and an area of SΔ . The effective height of the parallelepiped V  is 

nad vv
⋅ . The net polarization charge within V  is: 

( ) ( ) SaPSadnqQ nn Δ⋅=Δ⋅=Δ vvvv
, 

where n  (1/m3) is the number density of molecules. The corresponding polarization 
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surface charge density SQ ΔΔ  is: 

nps aP vv
⋅=ρ  (C/m2)       (7.6) 

2) Consider two dipoles with different polarization vectors 1P
v

, 2P
v

 in the interior of a 

differential volume V  bounded by a closed surface S  (Fig. 7-5b). Although each 

individual dipole is electrically neutral, some net charge pQ  can exist on the interface 

due to incomplete cancellation of the polarization charge between adjacent dipoles. To 

maintain the electric neutrality, pQ  must be equal in magnitude but opposite in sign to 

the total surface polarization charge 21 psps QQ + . Let pρ  represent the polarization 

volume charge density , ⇒ ∫=
V pp dvQ
 

ρ . By eq’s (7.6), (5.24), ⇒ =+ 21 psps QQ  

( ) ( )∫∫∫ ⋅∇=⋅=⋅
VSS n dvPsdPdsaP
   

vvvvv
. The requirement of ( )21 pspsp QQQ +−=  results in: 

( )Pp

v
⋅∇−=ρ  (C/m3)      (7.7) 

 

<Comment> 

1) Eq. (7.6) can be regarded as a special case of eq. (7.7) on the air-dielectric interface, 

where the divergence of the polarization vector P
v

 is infinite. 

2) Equivalent polarization charge densities psρ , pρ  can be used in collaboration with eq’s 

(6.10), (6.15) to evaluate the electric field and potential contributed by polarized 

dielectrics. 

 

 

■ Electric flux density 

In the presence of dielectric materials, the total electric field would be created by both the 

free and polarization charges. Fundamental postulate eq. (6.1) is thus modified as: 
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0ε
ρρ pE

+
=⋅∇

v
. 

By eq. (7.7), we have: 

ρ=⋅∇ D
r

,        (7.8) 

PED
vvv

+= 0ε  (C/m2),      (7.9) 

where the electric flux density D
v

 characterizes the contribution from the “free” charges. 

The integral form of eq. (7.8) (Gauss’s law) becomes: 

QsdD
S

=⋅∫ 
 vv

        (7.10) 

 

For linear, homogeneous, and isotropic dielectrics, the polarization vector is proportional to 

the electric field (by the elastic spring model): 

EP e

vv
χε 0= ,        (7.11) 

where the electric susceptibility eχ  is a dimensionless quantity independent of magnitude 

(linear), position (homogeneous), and direction (isotropic) of E
v

. By eq’s (7.9), (7.11), 

ED
vv

ε= ,         (7.12) 

where the permittivity of the medium ε  is defined as: 

( ) 01 εχε e+=          (7.13) 

 

<Comment> 

The strategy is using a single constant ε  to replace the tedious induced dipoles, polarization 

vector, and equivalent polarization charges in determining the total electric field. 

 

Example 7-2: Consider a parallel-plate capacitor. (1) D
v

 describes the surface density of free 

charges on the conducting plates. (2) P
v

 describes the surface density of polarization charges. 
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(3) E
v

0ε  describes the surface density of total charge or uncompensated free charge. 

 
Fig. 7-6. Physical meanings of electric flux density D

v
, polarization vector P

v
, and electric 

field intensity E
v

 illustrated in the example of a parallel-plate capacitor (after C. C. Su). 

 

Example 7-3: A point charge Q+  at the center of a spherical dielectric shell of permittivity 

0εε r  (Fig. 7-7a), where er χε += 1  is the relative permittivity. Find D
v

, E
v

, V , P
v

, and 

psρ . 

 

 
Fig. 7-7. (a) The geometry of a dielectric sphere. The corresponding (b) radial components of 

D
v

 (solid), E
v

0ε  (dashed), P
v

 (dash-dot), and (c) electric potential V . 
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Ans: (1) By spherical symmetry, ⇒ )(RDaD RR
vv

= . By eq. (7.10) and the fact that dielectric 

materials contribute to no “free” charge: ( ) QRRDsdD RS
=⋅=⋅∫ 2

 
4)( πvv

, ⇒ 

24
)(

R
QRDR π

= , for all 0>R . 

(2) By spherical symmetry, )(REaE RR
vv

= . By eq. (7.12), ⇒ 

24
)(

R
QRER πε

= , where 
⎩
⎨
⎧ <<

=
otherwise ,

for  ,

0

00

ε
εε

ε
RRRir . 

(3) )(RV  is derived by integration of )(RER . 

(4) By eq. (7.9), )(0 RPaEDP RR
vvvv

=−= ε , where )()()( 0 RERDRP RRR ε−= , ⇒ 
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−

otherwise ,0
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Q
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(5) By eq (7.6), the surface polarization charge density becomes: 

( ) ( ) ( )
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The total polarization surface charge is: 

( ) ( ) ( )
( )⎪

⎩

⎪
⎨

⎧

=>−

=<−−=⋅−−
==

−

−−
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for  ),0(1
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2

1

ε

επ
π
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ρ  

They create a radially inward E
v

 to “reduce” the total electric field in the dielectrics. 

 

 

7.3 General Boundary Conditions for Electric Fields 

■ Derivation 

As in air-conductor interface, we apply the integral forms of the two fundamental postulates 

on the differential contour “abcda” and the thin pill box with 0→Δh  across the interface of 
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two dielectric media (Fig. 7-8) to derive the BCs for the tangential and normal components of 

the electric field. 

 
Fig. 7-8. Differential contour and pill box used to derive general BCs (after DKC). 

1) Tangential BC: By eq. (6.4), ( ) ( ) 0     21 
=Δ⋅+Δ−⋅=⋅∫ wEwEldE ttabcda

vv
, ⇒ 

tt EE 21 =         (7.14) 

2) Normal BC: BC: By eq. (7.10), QsdD
S

=⋅∫ 
 vv

, ( )( ) SSaDaD snn Δ⋅=Δ⋅+⋅ ρ1221
vvvv

, ⇒ 

( ) sn DDa ρ=−⋅ 212

vvv       (7.15) 

Eq. (7.15) can also be written as: snn DD ρ=− 21 , where inD  ( =i 1, 2) denotes 

component of iD
v

 in the direction of 2nav  (unit normal vector directed from medium 2 to 

medium 1). 

 

<Comment> 

1) Eq’s (7.3), (7.4) are special cases of eq’s (7.14), (7.15), where { } 0, 22 =DE
vv

 are used. 

2) Only “free” surface charge density sρ  counts in eq. (7.15). If the two interfacing media 

are both dielectrics, 0=sρ , ⇒ nn DD 21 = . 

3) Eq’s (7.14), (7.15) remain valid even the fields are time-varying (Lesson 14, or Ch 7 of 

the textbook). BCs explain why most optical components (with material interfaces) are 

“polarization”-dependent. 


