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Introduction

Materials consist of atoms, which are made 
up of nuclei (positive charges) and 
electrons (negative charges).
The “total” E-field must be modified in the 
presence of materials.
Discuss the field behaviors inside some 
material, and on the interface of different 
materials.



Classification of materials − Classical view

Conductors: Electrons in the outermost 
shells of the atoms, very loosely held, can 
freely migrate due to thermal excitation 
(                     ). These electrons are shared
by all atoms.
Dielectrics: Electrons are confined within 
the inner shells, can hardly migrate.
Semiconductors: Electrons are moderately 
confined, movable when applying an 
external electric field. Free electron density 
(conductivity) can be changed by doping or 
bias voltage.
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Classification of materials − Quantum view (1)



Classification of materials − Quantum view (2)

Electric properties of materials depend on the 
band structure, and how they are filled by the 
electrons (Pauli’s exclusion principle).



Outline

Static E-field in the presence of conductors
Static E-field in the presence of dielectrics
General boundary conditions



Sec. 7-1
Static E-field in the Presence of 
Conductors

1. Inside a conductor
2. Air-conductor interfaces
3. Example: Conducting shell



pushes free charges away from one another, 
modify      by turns. The process continues until 
steady state is reached.
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Why no E-field inside a conductor? (1)
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Why no E-field inside a conductor? (2)

Correspond to the 
lowest system energy, 
state of equilibrium
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Air-conductor interface-1

Charge is movable, 
not in equilibrium 
(contradiction!)
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Air-conductor interface-2
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Air-conductor interface-3

⇒

, 
0

 ε
QsdE

S
=⋅∫

vv

0

0 
 

ε
ρ SSE

sdE

s
n

hS

Δ
=Δ⋅=

⋅
→Δ∫

vv

0ε
ρ s

nE =



Example 7-1: Conducting shell (1)

Spherical symmetry:
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Example 7-1: Conducting shell (2)
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Example 7-1: Conducting shell (3)
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Example 7-1: Conducting shell (4)



Conclusion

A “floating” conducting shell cannot isolate 
the effect of a charge.



Sec. 7-2
Static E-field in the Presence of 
Dielectrics

1. Microscopic and macroscopic dipoles
2. Polarization charge densities
3. Electric flux density
4. Example: Parallel-plate capacitor
5. Example: Dielectric shell



Microscopic electric dipoles − Nonpolar molecules

H2 CH4

Non-polar covalent 
bond (electrons are 
equally shared by the 
atoms).

Symmetric arrangement 
of polar bonds.



Microscopic electric dipoles − Polar molecules

HF

Polar covalent 
bond

NH3
2 lone 
electrons

Asymmetric arrangement 
of polar bonds

H2O



Macroscopic electric dipoles-1

A dielectric bulk made up of a large number 
of randomly oriented molecules (polar or non-
polar) typically has no macroscopic dipole 
moment in the absence of external E-field.



Macroscopic electric dipoles-2

In the presence of external E-field:

1. Non-polar molecule is polarized

2. Individual dipole moments are aligned
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Macroscopic electric dipoles-3

Each dipole (though 
electrically neutral) 
provides nonzero field, 
modifying the total E-field

(physics.udel.edu)



Strategy of analysis

It is too tedious to directly superpose the 
elementary fields: 
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Instead, we define polarization vector as:
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Polarization surface charge density-1

On the air-dielectric interface,     is dis-
continuous, net polarization exists.

P
v

E
v



Polarization surface charge density-2

Consider a differential parallelepiped V
bounded by Sb. The net polarization charge is:
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Polarization volume charge density-1

In the interior of a dielectric, net polarization 
charge exists where      is inhomogeneous:P
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Polarization volume charge density-2

Consider two polarization vectors     ,     in a 
differential volume V bounded by S.

1P
v

2P
v

Polarization charges on 
top and bottom surfaces:

( )∫ ⋅=+
S npsps dsaPQQ

 21
vv

( )∫∫ ⋅∇=⋅=
VS

dvPsdP
  

vvv

psρ

divergence 
theorem



Polarization volume charge density-3

By definition:

⇒

To maintain the electric neutrality:
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Comment-1

can be regarded as a special 
case of                      , where( )Pp
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Comment-2

Equivalent charge densities:

can be substituted into the formulas:

to evaluate the influence of polarized 
dielectrics.
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Electric flux density-definition

Total E-field is created by free & polarization 
charges: 
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Electric flux density - Application (1)

For linear, homogeneous, and isotropic
dielectrics, the polarization vector is 
proportional to the external electric field: 
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Electric flux density-application (2)
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In this way, a single constant replaces the 
tedious induced dipoles, polarization vector, 
equivalent polarization charges in determining 
the total electric field.
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Example 7-2: Physical meanings of D, E, P

: free charge
: polarization charge

: total charge
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Example 7-3: Dielectric shell (1)

Spherical symmetry:
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Example 7-3: Dielectric shell (2)

By             ,ED
vv

ε=

,
4

)( 2R
QRER πε

=⇒

⎩
⎨
⎧ <<

=
otherwise ,

for  ,

0

00

ε
εε

ε
RRRir

E
v



Example 7-3: Dielectric shell (3)

decay slower



Example 7-3: Dielectric shell (4)

By                    ,

ED
vv

ε=

EDP
vvv

0ε−=

( )
⎪⎩

⎪
⎨
⎧ <<−

=

−

otherwise ,0

for  ,
4

1

)(

02
1 RRR

R
Q

RP

ir

R

π
ε

P
v



Example 7-3: Dielectric shell (5)
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Example 7-3: Dielectric shell (6)
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Polarization charges create a 
radially inward E-field to 
reduce the total field.



Sec. 7-3
General Boundary Conditions

1. Tangential boundary condition
2. Normal boundary condition



General interface-1
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General interface-2
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Comment-1
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If M2 is a 
conductor:



Comment-2

Only free surface charge density counts in:
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If the two interfacing media are dielectrics:
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Comment-3

tt EE 21 =

( ) sn DDa ρ=−⋅ 212

vvv

remain valid even the E-fields are time-varying.


