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Lesson 06 Electrostatics in Free Space 

 

■ Introduction 

In electrostatics, electric charges are at rest and there is no magnetic field. We will start with 

two fundamental postulates of electrostatics in free space to define electric field intensity E
v

, 

from which all experimental laws and the concept of electric potential can be derived. 

 

 

6.1 Fundamental Postulates 

■ Definition and physical meaning 

Electric field intensity E
v

 describes the electrostatic force experienced by a unit charge: qF
v

 

(N/C or V/m). From the Helmholtz’s theorem (Lesson 5), E
v

 can be uniquely specified if its 

divergence and curl are given: 

0ε
ρ

=⋅∇ E
v

,        (6.1) 

0=×∇ E
v

,        (6.2) 

where ρ is the volume charge density (C/m3), and 0ε  is the permittivity of vacuum. Eq’s 

(6.1), (6.2) mean: (1) free charges are the “flow sources” of E
v

, (2) there is no “vortex 

source” of E
v

. 

 

 

■ Integral forms 

Integration of both sides of eq. (6.1) over a volume V  enclosed by the surface S  becomes: 

( )
0

 
0

 εε
ρ QdvdvE

VV
==⋅∇ ∫∫

v
, 

where Q represents the total charge inside S . Applying the divergence theorem [eq. (5.24)] 

to the left hand side of the equality, we arrive at the Gauss’s law: 
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0
 
 

ε
QsdE

S
=⋅∫

vv
        (6.3) 

Integration of both sides of eq. (6.2) over a surface S  bounded by the contour C becomes:  

( ) 0
 

=⋅×∇∫S
sdE vv

. 

Applying the Stokes’ theorem [eq. (5.29)] to the left hand side of the equality, we arrive at the 

Kirchhoff’s voltage law: 

0 
 

=⋅∫C
ldE
vv

        (6.4) 

Eq. (6.4) also implies that the scalar line integral of E
v

 (i.e., the voltage difference) depends 

only on the end points, not on the path. 

 

 

6.2 Gauss’s Law 

■ Definition and applications 

If the charge distribution has certain symmetry, such that the normal component of E
v

 is 

constant over an enclosed surface (Gaussian surface), eq. (6.3) becomes convenient in 

determining E
v

. 

 

Example 6-1: Consider an infinite planar sheet located at 0=z  with constant surface charge 

density sρ  (C/m2) (Fig. 6-1). 

 
Fig. 6-1. An infinite planar sheet with constant surface charge density (after DKC). 
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The planar symmetry ensures that the electric field must be of the form: 

⎩
⎨
⎧

<−−
>

=
0 if ),(

0 if ),(
zzEa

zzEa
E

zz

zz
v

v
v

. The corresponding Gaussian surface can be a rectangular box with 

top and bottom faces located at 0zz ±= . 
0

 
)(2 

ε
ρ AAzEsdE s

zS
==⋅∫

vv
, ⇒ 

02
)(

ε
ρs

z zE =  

(independent of z). ⇒ 
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⎪
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       (6.5) 

 

Example 6-2: Consider an infinitely long, straight line charge with constant line charge 

density lρ  (C/m) (Fig. 6-2). 

 
Fig. 6-2. An infinite line with constant line charge density (after DKC). 

The cylindrical symmetry ensures that the electric field must be of the form: )(rEaE rr
vv

= . 

The corresponding Gaussian surface is a cylinder of radius r and length L. ∫ ⋅
S

sdE
 
 vv

 

( )
0

2)(
ε
ρπ LrLrE l

r =⋅ , ⇒ 
rr

rE l
r

1
2

)(
0

∝=
πε
ρ . ⇒ 

r
aE l

r
02πε

ρvv
=         (6.6) 
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6.3 Coulomb’s Law 

■ Electric field created by point charge, discrete charges, and charge distribution 

The electric field E
v

 created by a point charge q  in a boundless free space must be of 

spherical symmetry, ⇒ )(REaE RR
vv

= . By eq. (6.3), ( )
0

2

 
4)( 

ε
π qRREsdE RS

=⋅=⋅∫
vv

, ⇒ 

2
04

1
R
qaE R πε

vv
=        (6.7) 

 
Fig. 6-3. A point charge constructs a spherically symmetric electric field. 

 

By the relation qFE
vv

= , we arrive at the Coulomb’s law, i.e., the force exerted by charge 

1q  on charge 2q  is: 

2
12

21

0
12212 4

1
12 R

qqaEqF R πε
vvv

==       (6.8) 

where 1212
RaR

v  is a vector directed from the “source point” 1q  to the “observation point” 

2q . 

 

Since the two fundamental postulates eq’s (6.1), (6.2) are linear, the total electric field at 

position rv  as a result of a system of discrete charges { }nkqk ..., ,2 ,1 , =  or a continuous 

charge distribution )(rv ′vρ  within the volume V ′  can be derived by the principle of 

superposition: 

 ∑
=

=
n

k k

k
R R

qarE
k

1
2

04
1)( vvv

πε
 (6.9)
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 ∫ ′
′

′
′

=
V

v
R vd

rrR
rarE

 2
0 ),(

)(
4

1)( vv

v
vvv ρ

πε
 (6.10)

In eq. (6.9), 
k

k
R rr

rra
k vv

vv
v

′−
′−

=  is a unit vector directed from the kth source charge kq  at position 

kr ′
v  to the observation point rv , and kk rrR ′−= vv  is the distance between them. In eq. (6.10), 

rr
rraR ′−
′−

= vv

vv
v  is a unit vector directed from the source point r ′v  to the observation point rv , 

and rrrrR vvvv ′−=′),(  is the distance between them. The differential charge at r ′v , i.e.,  

vdrv ′′)(vρ , is replaced by sdrs ′′)(vρ  or ldrl ′′)(vρ  if it is the surface or line charge density of 

interest, respectively. 

 

<Comment> 

If the point charge at the origin is regarded as an impulse source, eq. (6.7) standards for the 

electric field “impulse response” of the free space (a linear system).  

Fig. 6-4. The electric field impulse response of free space. 

 

Example 6-3: For a thin spherical shell with uniform surface charge distribution, what is the 

electric field at an arbitrary point “inside” the shell? 

Ans: (M1) Since no charge exists inside the shell, ( ) 04)( 2

 
=⋅=⋅∫ RREsdE RS

πvv
 for any 

“Gaussian” surface S  inside the shell. ⇒ 0=E
v

 everywhere. (M2) By eq. (6.10), the 

contributions of E
v

 from a pair of elementary cones (DKC p80) will cancel with each other. 

By scanning the solid angle Ωd  to cover the entire spherical surface, ⇒ 0=E
v
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everywhere. 

 

 

6.4 Electric Potential 

■ Definition and physical meaning 

From the null identity of eq. (5.34) and fundamental postulate eq. (6.2), vector E-field E
v

 is 

curl-free and can be expressed as the gradient of a scalar potential field V : 

VE −∇=
v

       (6.11) 

The work that has to be done to move a charge q  from 1P  to 2P  in an electric field E
v

 is: 

∫ ⋅−= 2

1

 

 12

P

P
ldEqW
vv

. Substituting eq. (6.11) into the line integral, we have: ∫ ⋅∇= 2

1

 

 
12 P

P
ldV

q
W v

. 

By eq. (5.21), 

[ ]∫ ++⋅⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

+
∂
∂

= 2

1

 

 
12 P

P zyxzyx dzadyadxa
z
Va

y
Va

x
Va

q
W vvvvvv  

12

 

 

2

1

VVVVV
P

P zyx −=Δ+Δ+Δ= ∫ , ⇒ 

12
12 VV
q

W
−=  (J/C, or Volt)      (6.12) 

i.e., the electric potential V  defined by eq. (6.11) has a physical meaning of: the work done 

in moving a unit charge against the existing electric field. 

 

<Comment> 

1) The line integral ∫ ⋅2

1

 

 

P

P
ldE
vv

 is path-independent, ⇒ consistent with the Kirchhoff’s 

voltage law eq. (6.4). 

2) Since V∇  is in the direction of maximum rate of increase of V , eq. (6.11) states that 

the electric field is always normal to the “equi-potential” surfaces or lines. 
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■ Electric potential created by point charge, discrete charges, and charge distribution 

Let the point 1P  be at infinity and 01 =V  (reference). The potential at a sphere of radius R 

due to a point charge q  located at the origin can be evaluated by eq. (6.7): 

( ) ∫∫
∞

∞ ′
′

=′⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

−=−=−
 

 2
0

 

 2
0

12 44
1 0)(

R

R

RR R
RdqRda

R
qaRVVV

πεπε
vv , ⇒ 

R
qRV

04
)(

πε
=        (6.13) 

The point charge at the origin is regarded as an impulse source, eq. (6.13) represents the 

potential “impulse response” of free space (a linear system). The potential due to discrete 

charges or continuous charge distribution can be derived by superposition: 

∑
=

=
n

k k

k

R
qrV

104
1)(
πε

v       (6.14) 

vd
rrR

rrV
V

v ′
′
′

= ∫ ′ 
0 ),(

)(
4

1)( vv

v
v ρ

πε
     (6.15) 

where kk rrR vv ′−= , rrrrR vvvv ′−=′),(  are the distance between the source and observation 

points. 

 

<Comment> 

Given charge distribution, we should derive E
v

 according to the following priority: 

1) By Gauss’s law whenever possible. 

2) Evaluate potential field V  first (scalar integration), then determine E
v

 by eq. (6.11). 

3) Directly determine E
v

 eq. (6.10) (vector integration). 

 

 

6.5 Electric Dipole 

An electric dipole consists of a pair of point charges q±  separated by distance d . The 

resulting electric field at a distant point Rar R
vv =  ( dR >> ) can be evaluated in two ways. 
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(M1) Refer to Fig. 6-5a. By eq. (6.9), the electric dipole forms an electric field of: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

+
−

−

−
= 33

0 2

2

2

2
4

)(
dR

dR

dR

dRqrE vv

vv

vv

vv
vv

πε
. 

Under the far-field approximation ( dR >> ) (DKC p83): 

(1) ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
−=+⋅−=−⋅−=− 2

2

2
2

2
22

4
1

4
222

R
d
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vvvvvvvv
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⎜⎜
⎝
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2 1
R
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⇒ ⎟⎟
⎠

⎞
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⎝

⎛ ⋅
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2
23

2
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R
dRR

R
dRRdR
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vv

. Also, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
−≈+ −−

2
33

2
312

R
dRRdR
vv

vv
. 

(2) By RaR R
vv

= , dad z
vv

= , ⇒ θcosRddR =⋅
vv

, ⇒ 

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −⎟
⎠
⎞

⎜
⎝
⎛ +=

2
cos

2
31

2
cos

2
31

4
)( 223

0

daRa
R

RddaRa
R

Rd
R

qrE zRzR
vvvvvv θθ

πε  

( )zR aa
R

qd vv −⋅≈ θ
πε

cos3
4 3

0

. 

(3) In the spherical coordinate system, θθ θ sincos aaa Rz
vvv −= , ⇒  

( )θθ
πε θ sincos2

4
)( 3

0

aa
R

prE R
vvvv

+≈     (6.16) 

where pp v= , and pv  is the electric dipole moment: 

dqp
vv ≡         (6.17) 

Fig. 6-5. (a) The electric field at P created by an electric dipole. (b) The geometry used to evaluate potential at P 

created by an electric dipole. 
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(M2) Refer to Fig. 6-5b. By eq. (6.14), the electric dipole forms an electric potential field of: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−+ RR
qRV 11

4
)(

0πε
. 

Under the far-field approximation ( dR >> ) (DKC p95): 

⎟
⎠
⎞

⎜
⎝
⎛ −=−≈+ θθ cos

2
1cos

2 R
dRdRR , ⇒ ⎟

⎠
⎞

⎜
⎝
⎛ +≈ −

+

θcos
2

11 1

R
dR

R
; 

⎟
⎠
⎞

⎜
⎝
⎛ +=+≈− θθ cos

2
1cos

2 R
dRdRR , ⇒ ⎟

⎠
⎞

⎜
⎝
⎛ −≈ −

−

θcos
2

11 1

R
dR

R
; 

( )
22 cos11

R
aqp

R
d

RR
R
vv ⋅

=≈−
−+

θ , ⇒ 

2
04

)(
R

apRV R

πε

vv ⋅
≈        (6.18) 

Substitute eq. (6.18) into eq. (6.11) gives rise to the same formula as eq. (6.16). 

 

 
Fig. 6-6. The electric field and equi-potential lines created by an electric dipole (after DKC). 
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Fig. 6-7. Magnitude of the electric field versus the radial distance due to an electric 

dipole (solid and dash-dot) and a point charge (dashed). 

 

<Comment> 

1) The dipole-induced V  and E
v

 [eq’s (6.18), (6.16)] decay with the radial distance R 

one-order faster than those of single point charge [eq’s (6.13), (6.7)]. This is attributed to 

the fact that the effects of two opposite charges tend to cancel (weaken) with each other. 

2) Electric dipole is essential in modeling the interaction between non-conducting material 

and external electric field (Lesson 7). 


