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Lesson 6

Electrostatics in Free Space

¥ w £ Shang-Da Yang

Institute of Photonics Technologies
Department of Electrical Engineering
National Tsing Hua University, Taiwan



Introduction

In this lesson, we will consider the electric field
and potential due to electric charges at rest,
and there is no magnetic field.




Outline

Fundamental postulates
Gauss’s law

Coulomb’s law

Electric potential
Electric dipole
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Sec. 6-1

Fundamental Postulates

1.  Differential forms
2. Integral forms



" A
Differential forms

—

E : Force per unit charge (N/C)

Helmholtz's theorem:

—

)
V.F ..flowsource 9 -

4 _ . —— F
V x F ...vortex source G

g

(

...volume charge density (C/m?3)

S,

) |

...permittivity of vacuum

<
X
[T
I
O
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Physical meaning

—

v.E=L . free charges are flow source of E
3 £y

—

VxE =0 ...novortex source of E

\




"

Integral forms-1

fA-ds =] (v-Akv

:> §SE-d§:g ...Gauss’s law




Integral forms-2
VxE=0,= [ (VxE)-ds=0

By the Stoke’s theorem: SO G D

—

=) $ E-dl =0

Equivalent to Kirchhoff's voltage law: )V =0
K

Static electric field is conservative.
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Sec. 6-2

Gauss’s Law

1.  Definition
2. Examples



Definition and its applications

If the charge distribution has certain symmetry,
such that the normal component of E is
constant over an enclosed surface S (Gaussian

surface), =

§S|§-o|§=g

&y

becomes convenient in determining E



"

Example 6-1: Planar charge

Infinite uniform

surface charge,@

Planar symmetry, = E ={

a,E (z),ifz>0
-a,E,(-2),if z<0

= s PsA P
= ¢ E-dS=2E,(z)A=—"—, E, (7)==
%F (2) ‘. (2) 2z, -Independent of 2!
Gaussian surface



"

Example 6-2: Line charge

Cylindrical symmetry, =

E=3,E(r)

Cylindrical |2
Gaussian |
surface

%ﬁcﬁ = Er(r)-(ZﬂrL):p'—L,
Gaussian surface 0

Infinitely long 1

uniform line . ,0|
charge Er (r) — 272'8 r oC F
0




Comparison of different types of light source

Planar light source, Linear light source, linear
minimal decay with decay with distance

distance

Point light
source,
guadratic decay
with distance
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Sec. 6-3

Coulomb’s Law

1.  Definition
2. Electric field due to point change

3.  Electric field due to charge
distributions

4.  Electric sheltering



E-field due to a point charge

Spherical symmetry, =

e “\V’E E =azEx(R)

:’”/\’ \‘ .y %)E-d§:ER(R).(4ﬂR2):i

€9

Gaussian surface

/"-
R
’
IR
[
\
\
~

""""" E_5_+ 94 1

oC ——

“Aze, R R?




Coulomb’s law

observ —

Z ation pt. IZ12 ByE:If/q,:>

A 1 g,
F12:CI2E12 : -

2
Are, R},

...Coulomb’s law, which is
experimentally measurable.




E-field due to charge distribution-1

The 2 fundamental postulates are linear:

V.E =21
<o
) S
V E:IO > VE2:&
< (90 L gO
=g = -\ C C
VxE=0 :>V-(C1E1+C2E2)= 11T Cal



E-field due to charge distribution-2

For a system of discrete charges{q, ,k =1,2,...,n}:

E() = ag) %

o 2

Principle of superposition




E-field due to charge distribution-3

For a system of continuous charge distribution
o, (r") within a volume V'

E(F) =
1 j 2 ,01([)
dre, TV —"R(T, r')?

Principle of superposition




Viewpoint of linear system

If the point charge at the origin is regarded as an
Impulse source, the resulting E-field becomes the
Impulse response of the system (free space).

Z

q y = | Free space

x -
o-function

p(r)=0qo(X,Y,2)




Example 6-3: Sheltering effect (1)

Consider a thin spherical shell with uniform
surface charge distribution p,(C/m?)

o. (M1) Spherical symmetry,

/ _
= E=3a;E;(R)

No charge inside:
§.E-ds = Eq(R)-(47R?)=0

for all Gaussian surfaces
S:R=R,<b

—

— E=0 ..forR<b



Example 6-3: Sheltering effect (2)

(M2) By source integration:

i E(r) — 1 I ,aR pi(l;r)z dV',
dre, R(F,r")

Contributions from a pair
of elementary cones
cancel with each other.

—_—

— E =0 forany pointP
Inside the shell
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Sec. 6-4

Electric Potential

1.  Definition
2. Electric potential due to point change

3. Electric potential due to charge
distributions

4. Procedures to determine electric field



Definition

m
1

-VV

{vx(vv): 0 ... null identity

VxE =0 ... fundamental postulate

Vector E-field E can be represented as the
gradient of a scalar potential field V



Physical meaning

The work that has to be done to move a charge
g from P, to P, in an electric field E :

W, = _qj: wv dl
= =-VV
W, cr[_ov v _ N o .
= -—2-|"la —+a —+a,— |-|adl+ady+a
q Rl Qf_[%y ]

= j § AV, +AV, +AV, =V, -V, ...independent
Pl
of path



Point charge

(reference point)

V, -V, =V (R)-0

=j:f(— E)-df




Viewpoint of linear system

If the point charge at the origin is regarded as an
Impulse source:

z
q y =% | Free space
x .
o-function impulse response
p(F) =05(x, Y, 2) V(F)=—

- Ae,R



Electrical potential due to charges-1

For a system of discrete charges {q,,k =1,2,...,n}:

Z
A
V,+... +V, 1 Z i
O"’"'R | 472'50 k—l
g, " /IR,
roO Principle of superposition
q, -



Electrical potential due to charges-2

For a system of continuous charge distribution
o, (r") within a volume V'

o 1 P o
V= 4 Ry

Principle of superposition




" A
How to derive the E-field?
Given charge distribution:
1. By Gauss’s law whenever possible

2. Evaluate potential field V first (scalar
integration), then E = -VV

3. Directly determine E-field by vector integration

- 1 A v(r’)
=)= 47&90-['61 /()A ")



e # hotonics
) ab“

Sec. 6-5

Electric Dipole

Definition
Far electric field of a dipole
Far electric potential of a dipole

Comparison between point charge
and dipole

w0 R



Definition

Essential in modeling the interaction between non-
conducting material and external electric field

(Lesson 7)

A Dipole moment:

d =

p=ad




Far E-field-1

> Ny

observation pt.

R—d/2

.

R-d/2)

70

R+d/2

3
J

‘Ii+cT/2




Far E-field-2
SinceR >>d
2
R-d/2 =(R-d/2) (R-d/2)=R*-(R-d)+
I o
_ Rz(l— RR'zd +;I§{j ~ Rz(l— RR'Zdj
Rd cos &
- s ~-3/2 _|J
:‘Q—J/Z‘_sz Rz[l—R'2 j zR?’[lJrER'Z j
R 2 R
i N Y
(1-x) =1-rx
Similarly,[R+d/2]” = R?’(l—g Rd;gwj



Far E-field-3
aRR—aZE aRR+aZE
2 2
£, {|R-d/4 '@-4/2) \M/z\
Are, l l
3 Rd coséd
2 R 2 R

a, cosé—a,sing

= E(F) ~ ~-(a 3cosei
47250R

= |E(T) = 47ufR3 (§R20089+§68in 6’) (if R>>d)
0




" JE

Far E-field-4

(if R >>d)




Far field electric potential-1




Far field electric potential-2

SinceR >>d

R, = R—Ecosez R 1—icose
2 2R

R = R+Ecosé?: R 1+icosé?
2 2R

1 d
— — ~R1-—cosé¥ |,
R ( 2R j =



Far field electric potential-3

A
_ ] P
d-a, =dcosé

V(R)=— [1—1j
dre,\ R, R

_qgdcos®  qd-a,
4re,R*  Arg,R?

V(R) = P-4y (if R >>d)

~E=-VW~_P 3(aR20036+593in¢9)
A7e,R
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Far field electric potential-4

0 Voc%
} :3\1
=90°, V=0

Equi-potential
lmes



Dipole vs. point charge

22

~ R 1 g
\E(F)=a2a
(F) R47Z'€0@
{
p-a
"V (R) ~ R
< (R) Are(R?
V(R)=—1

normalized | |

(E(r) 4%2@ (a,2cosé +a,sin )

formul
Inaccurate , _
single point

G charge
- L . 7
S dipole ;
> -'{ 0-0)
» = ﬁ/ |
\o -~ —y -~ 1
113;2 L ., ~ _.L
dipol S _

_ ipole o
. ld (6=90") ‘o

() — 4 6 8 10

radial distance, R'd



