

Lesson 6 Electrostatics in Free Space

楊尚達 Shang-Da Yang

Institute of Photonics Technologies
Department of Electrical Engineering
National Tsing Hua University, Taiwan

Introduction

In this lesson, we will consider the electric field and potential due to electric charges at rest, and there is no magnetic field.

Outline

- Fundamental postulates
- Gauss's law
- Coulomb's law
- Electric potential
- Electric dipole

Sec. 6-1 Fundamental Postulates

- 1. Differential forms
- 2. Integral forms

Differential forms

 \overline{E} : Force per unit charge (N/C)

Helmholtz's theorem:

$$\begin{cases} \nabla \cdot \vec{F} & \text{...flow source } \mathcal{E} \\ \nabla \times \vec{F} & \text{...vortex source } \vec{G} \end{cases} \stackrel{\mathcal{F}}{\longrightarrow} \vec{F}$$

$$\begin{cases} \nabla \cdot \vec{E} = \frac{\cancel{Q}}{\cancel{\mathcal{E}_0}} \dots \text{volume charge density (C/m}^3) \\ \nabla \cdot \vec{E} = 0 \end{cases} \dots \text{permittivity of vacuum}$$

Physical meaning

$$\begin{cases} \nabla \cdot \vec{E} = \frac{\rho}{\mathcal{E}_0} \text{ ...free charges are flow source of } \vec{E} \\ \nabla \times \vec{E} = 0 \text{ ...no vortex source of } \vec{E} \end{cases}$$

Integral forms-1

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}, \Rightarrow \int_V \left(\nabla \cdot \vec{E} \right) dv = \int_V \frac{\rho}{\varepsilon_0} dv = \frac{Q}{\varepsilon_0}$$

By the divergence theorem:

$$\oint_{S} \vec{A} \cdot d\vec{s} = \int_{V} (\nabla \cdot \vec{A}) dv$$

$$\oint_{S} \vec{E} \cdot d\vec{s} = \frac{Q}{\varepsilon_{0}} \quad ... \text{Gauss's law}$$

Integral forms-2

$$\nabla \times \vec{E} = 0, \Rightarrow \int_{S} (\nabla \times \vec{E}) \cdot d\vec{s} = 0$$

By the Stoke's theorem:

$$\oint_C \vec{A} \cdot d\vec{l} = \int_S (\nabla \times \vec{A}) \cdot d\vec{s}$$

Equivalent to Kirchhoff's voltage law: $\sum v_k = 0$ Static electric field is conservative.

Sec. 6-2 Gauss's Law

- 1. Definition
- 2. Examples

Definition and its applications

If the charge distribution has certain symmetry, such that the normal component of \vec{E} is constant over an enclosed surface S (Gaussian surface), \Rightarrow

$$\oint_{S} \vec{E} \cdot d\vec{s} = \frac{Q}{\varepsilon_{0}}$$

becomes convenient in determining \vec{E}

Example 6-1: Planar charge

Planar symmetry,
$$\Rightarrow \vec{E} = \begin{cases} \vec{a}_z E_z(z), & \text{if } z > 0 \\ -\vec{a}_z E_z(-z), & \text{if } z < 0 \end{cases}$$

$$\Rightarrow \oint_{\mathcal{S}} \vec{E} \cdot d\vec{s} = 2E_z(z)A = \frac{\rho_s A}{\varepsilon_0}, \quad E_z(z) = \frac{\rho_s}{2\varepsilon_0} \quad ... \text{Independent of } z!$$

Gaussian surface

Example 6-2: Line charge

Cylindrical symmetry, ⇒

$$\vec{E} = \vec{a}_r E_r(r)$$

$$\oint_{S} \vec{E} \cdot d\vec{s} = E_{r}(r) \cdot \left(2\pi rL\right) = \frac{\rho_{l}L}{\varepsilon_{0}},$$
 Gaussian surface

$$E_r(r) = \frac{\rho_l}{2\pi\varepsilon_0 r} \propto \frac{1}{r}$$

Comparison of different types of light source

Planar light source, minimal decay with distance

Linear light source, linear decay with distance

Point light source, quadratic decay with distance

Sec. 6-3 Coulomb's Law

- 1. Definition
- 2. Electric field due to point change
- 3. Electric field due to charge distributions
- 4. Electric sheltering

E-field due to a point charge

Spherical symmetry, ⇒

$$\vec{E} = \vec{a}_R E_R(R)$$

$$\oint_{S} \vec{E} \cdot d\vec{s} = E_{R}(R) \cdot \left(4\pi R^{2}\right) = \frac{q}{\varepsilon_{0}}$$

Gaussian surface

$$\vec{E} = \vec{a}_R \frac{1}{4\pi\varepsilon_0} \frac{q}{R^2} \propto \frac{1}{R^2}$$

Coulomb's law

By
$$ec{E}=ec{F}/q$$
 , \Rightarrow

$$|\vec{F}_{12} = q_2 \vec{E}_{12} = |\vec{a}_{R_{12}}| \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{R_{12}^2}$$

...Coulomb's law, which is experimentally measurable.

E-field due to charge distribution-1

The 2 fundamental postulates are linear:

$$\begin{cases} \nabla \cdot \vec{E}_1 = \frac{\rho_1}{\varepsilon_0} \\ \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \end{cases} \longrightarrow \begin{cases} \nabla \cdot \vec{E}_2 = \frac{\rho_2}{\varepsilon_0} \\ \nabla \times \vec{E} = 0 \end{cases} \Rightarrow \nabla \cdot \left(c_1 \vec{E}_1 + c_2 \vec{E}_2 \right) = \frac{c_1 \rho_1 + c_2 \rho_2}{\varepsilon_0}$$

E-field due to charge distribution-2

For a system of discrete charges $\{q_k, k = 1, 2, ..., n\}$:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{k=1}^n \vec{a}_{R_k} \frac{q_k}{R_k^2}$$

Principle of superposition

Ŋ.

E-field due to charge distribution-3

For a system of continuous charge distribution $\rho_{v}(\vec{r}')$ within a volume V':

$$\frac{\vec{E}(\vec{r}) =}{4\pi\varepsilon_0} \int_{V} \vec{a}_R \frac{\rho_v(\vec{r}')}{R(\vec{r}, \vec{r}')^2} dv'$$

Principle of superposition

Viewpoint of linear system

If the point charge at the origin is regarded as an impulse source, the resulting E-field becomes the impulse response of the system (free space).

Example 6-3: Sheltering effect (1)

Consider a thin spherical shell with uniform surface charge distribution $\rho_s(C/m^2)$

(M1) Spherical symmetry,

$$\Rightarrow \vec{E} = \vec{a}_R E_R(R)$$

No charge inside:

$$\oint_{S} \vec{E} \cdot d\vec{s} = E_{R}(R) \cdot \left(4\pi R^{2}\right) = 0$$

for all Gaussian surfaces

$$S: R = R_0 < b$$

$$\Rightarrow \vec{E} = 0$$
 ...for $R < b$

Example 6-3: Sheltering effect (2)

(M2) By source integration:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{V'} \vec{a}_R \frac{\rho_v(\vec{r}')}{R(\vec{r}, \vec{r}')^2} dv',$$

Contributions from a pair of elementary cones cancel with each other.

$$\Rightarrow \vec{E} = 0$$
 for any point P inside the shell

Sec. 6-4 Electric Potential

- 1. Definition
- 2. Electric potential due to point change
- 3. Electric potential due to charge distributions
- 4. Procedures to determine electric field

Definition

$$\begin{cases} \nabla \times (\nabla V) = 0 & \dots \text{ null identity} \\ \nabla \times \vec{E} = 0 & \dots \text{ fundamental postulate} \end{cases} \vec{E} = -\nabla V$$

Vector E-field \vec{E} can be represented as the gradient of a scalar potential field V

Physical meaning

The work that has to be done to move a charge q from P_1 to P_2 in an electric field \vec{E} :

$$\begin{split} W_{12} &= -q \int_{P_1}^{P_2} \vec{E} \cdot d\vec{l} = q \int_{P_1}^{P_2} \nabla V \cdot d\vec{l} \\ &\Rightarrow \frac{W_{12}}{q} = \int_{P_1}^{P_2} \left[\vec{a}_x \frac{\partial V}{\partial x} + \vec{a}_y \frac{\partial V}{\partial y} + \vec{a}_z \frac{\partial V}{\partial z} \right] \cdot \left[\vec{a}_x dx + \vec{a}_y dy + \vec{a}_z dz \right] \\ &= \int_{P_1}^{P_2} \Delta V_x + \Delta V_y + \Delta V_z = V_2 - V_1 \quad \text{...independent} \\ &\qquad \qquad \text{of path} \end{split}$$

Point charge

(reference point)

nce point)
$$V_{2} - V_{1} = V(R) - 0$$

$$= \int_{P_{1}}^{P_{2}} (-\vec{E}) \cdot d\vec{l}$$

$$= V(R) = \int_{\infty}^{R} \left(-\vec{q}_{R} \frac{1}{4\pi\varepsilon_{0}} \frac{q}{R'^{2}} \right) \cdot (\vec{q}_{R}' dR')$$

$$= \frac{q}{4\pi\varepsilon_{0}} \int_{R}^{\infty} \frac{dR'}{R'^{2}}$$

$$\Rightarrow V(R) = \frac{q}{4\pi\varepsilon_0 R} \propto \frac{1}{R}$$

Viewpoint of linear system

If the point charge at the origin is regarded as an impulse source:

$$\rho(\vec{r}) = q\delta(x, y, z)$$

$$V(\vec{r}) = \frac{q}{4\pi\varepsilon_0 R}$$

Electrical potential due to charges-1

For a system of discrete charges $\{q_k, k = 1, 2, ..., n\}$:

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{k=1}^{n} \frac{q_k}{R_k}$$

Principle of superposition

Electrical potential due to charges-2

For a system of continuous charge distribution $\rho_{v}(\vec{r}')$ within a volume V':

$$V(\vec{r},\vec{r'}) V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{V'} \frac{\rho_v(\vec{r}')}{R(\vec{r},\vec{r}')} dv'$$

Principle of superposition

How to derive the E-field?

Given charge distribution:

- 1. By Gauss's law whenever possible
- 2. Evaluate potential field V first (scalar integration), then $\vec{E} = -\nabla V$
- 3. Directly determine E-field by vector integration

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{V'} \vec{a}_R \frac{\rho_v(\vec{r}')}{R(\vec{r}, \vec{r}')^2} dv'$$

Sec. 6-5 Electric Dipole

- 1. Definition
- 2. Far electric field of a dipole
- 3. Far electric potential of a dipole
- 4. Comparison between point charge and dipole

Definition

Essential in modeling the interaction between nonconducting material and external electric field (Lesson 7)

Far E-field-1

Far E-field-2

Since R >> d

$$|\vec{R} - \vec{d}/2|^2 = (\vec{R} - \vec{d}/2) \cdot (\vec{R} - \vec{d}/2) = R^2 - (\vec{R} \cdot \vec{d}) + \frac{d^2}{4}$$

$$= R^2 \left(1 - \frac{\vec{R} \cdot \vec{d}}{R^2} + \frac{d^2}{4R^2} \right) \approx R^2 \left(1 - \frac{\vec{R} \cdot \vec{d}}{R^2} \right)$$

$$Rd \cos \theta$$

$$\Rightarrow |\vec{R} - \vec{d}/2|^{-3} \approx \left[R^2 \left(1 - \frac{\vec{R} \cdot \vec{d}}{R^2} \right) \right]^{-3/2} \approx R^{-3} \left(1 + \frac{3}{2} \frac{\vec{R} \cdot \vec{d}}{R^2} \right)$$
Similarly, $|\vec{R} + \vec{d}/2|^{-3} \approx R^{-3} \left(1 - \frac{3}{2} \frac{Rd \cos \theta}{R^2} \right)$

Far E-field-3

$$\vec{a}_R R - \vec{a}_z \frac{d}{2} \qquad \vec{a}_R R + \vec{a}_z \frac{d}{2}$$

$$\vec{E}(\vec{r}) = \frac{q}{4\pi\varepsilon_0} \left[\left| \vec{R} - \vec{d}/2 \right|^{-3} \left(\vec{R} - \vec{d}/2 \right) - \left| \vec{R} + \vec{d}/2 \right|^{-3} \left(\vec{R} + \vec{d}/2 \right) \right]$$

$$\approx R^{-3} \left(1 + \frac{3}{2} \frac{Rd \cos \theta}{R^2} \right) \qquad \approx R^{-3} \left(1 - \frac{3}{2} \frac{Rd \cos \theta}{R^2} \right)$$

$$\Rightarrow \vec{E}(\vec{r}) \approx \frac{qd}{4\pi\varepsilon_0 R^3} \cdot \left(\vec{a}_R 3 \cos \theta - \vec{a}_g \sin \theta \right)$$

$$\Rightarrow \left| \vec{E}(\vec{r}) \approx \frac{p}{4\pi\varepsilon_0 R^3} \left(\vec{a}_R 2\cos\theta + \vec{a}_\theta \sin\theta \right) \right| \text{ (if } R >> d)$$

Far E-field-4

Far field electric potential-1

Far field electric potential-2

Since R >> d

$$R_{+} \approx R - \frac{d}{2}\cos\theta = R\left(1 - \frac{d}{2R}\cos\theta\right)$$
$$\Rightarrow \frac{1}{R_{+}} \approx R^{-1}\left(1 + \frac{d}{2R}\cos\theta\right)$$

$$R_{-} \approx R + \frac{d}{2}\cos\theta = R\left(1 + \frac{d}{2R}\cos\theta\right)$$

$$\Rightarrow \frac{1}{R_{-}} \approx R^{-1} \left(1 - \frac{d}{2R} \cos \theta \right), \quad \Rightarrow \frac{1}{R_{+}} - \frac{1}{R_{-}} \approx R^{-1} \left(\frac{d}{R} \cos \theta \right)$$
$$= \frac{d \cos \theta}{R^{2}}$$

Ŋ.

Far field electric potential-3

Far field electric potential-4

Dipole vs. point charge

$$\begin{cases} \vec{E}(\vec{r}) \approx \frac{p}{4\pi\varepsilon_0 R^3} \left(\vec{a}_R 2\cos\theta + \vec{a}_\theta \sin\theta \right) \\ \vec{E}(\vec{r}) = \vec{a}_R \frac{1}{4\pi\varepsilon_0} \frac{q}{R^2} \\ V(R) \approx \frac{\vec{p} \cdot \vec{a}_R}{4\pi\varepsilon_0 R^2} \\ V(R) = \frac{q}{4\pi\varepsilon_0 R} \end{cases}$$
formula inaccurate single point charge dipole
$$(\theta=0)$$

$$V(R) \approx \frac{q}{4\pi\varepsilon_0 R^3} = \frac{q}{4\pi\varepsilon_0 R^3}$$