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Lesson 05 Vector Analysis 

 

■ Introduction 

1) Physical quantities in EM could be scalar (charge, current, energy) or vector (EM fields). 

2) Specifying a vector in a 3-D space requires three numbers, depending on the choice of a 

coordinate system. However, EM laws are independent of coordinate system of use. 

3) The use of vector analysis in EM is not necessary (e.g., James Maxwell’s original work), 

but will lead to elegant formulations. 

 

 

5.1 Vector Algebra 

■ Vector addition and subtraction 

 
Fig. 5-1. Illustration of vector addition: BAC

vvv
+=  (after DKC). 

 

 

■ Dot (inner) product 

The dot product of two vectors A
v

 and B
v

 is a scalar equal to the product of A
v

 and the 

“projection” of B
v

 on A
v

: 

ABBABA θcos
vvvv

⋅=⋅ ,       (5.1) 

where ],0[ πθ =AB  is the smaller included angle. Dot product is commutative ( ABBA
vvvv

⋅=⋅ ) 

and distributive [ CABACBA
vvvvvvv

⋅+⋅=+⋅ )( ]. 
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■ Cross (outer) product 

The cross product of two vectors A
v

 and B
v

 is a vector: 

ABn BAaBA θsin⋅⋅=×
vvvvv

,      (5.2) 

where nav  is a unit vector normal to A
v

 and B
v

 (in the direction of the right thumb when 

the four fingers rotate from A
v

 to B
v

), ],0[ πθ =AB  is the smaller included angle. Cross 

product is neither commutative ( ABBA
vvvv

×≠× ) nor associative [ ( ) ( ) CBACBA
vvvvvv

××≠×× ], 

but is distributive [ CABACBA
vvvvvvv

×+×=+× )( ]. 

 

 

■ Product of three vectors 

1) Scalar triple product: 

( ) ( ) ( )BACACBCBA
vvvvvvvvv

×⋅=×⋅=×⋅      (5.3) 

Its magnitude represents the volume of the parallelepiped (Fig. 5-2). 

 
Fig. 5-2. Illustration of scalar triple product: ( )CBA

vvv
×⋅  (after DKC). 

2) Vector triple product: 

( ) ( ) ( )BACCABCBA
vvvvvvvvv

⋅⋅−⋅=××       (5.4) 

 

 

5.2 Orthogonal Coordinate Systems 

■ Definition and basic properties 
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A point in a 3-D orthogonal coordinate system can be located as the intersection of three 

“curved”, mutually perpendicular surfaces represented by { =iu constant, =i 1, 2, 3}. The 

three base vectors (unit vectors in the directions of coordinate axes) { }
iuav  satisfy with: 

 
kji uuu aaa vvv =× , =),,( kji (1,2,3), (2,3,1), (3,1,2); (5.5)

 
⎩
⎨
⎧

=
≠

==⋅
ji
ji

aa ijuu ji  if ,1
 if ,0

δvv , (5.6)

Eq’s (5.1), (5.2) can also be evaluated by linear algebra formulas if the involved vectors are 

represented by the linear combination of the base vectors of some orthogonal coordinate 

system: 321 321
AaAaAaA uuu

vvvv
++= , 321 321

BaBaBaB uuu
vvvv

++= : 

( ) ( )321321 321321
BaBaBaAaAaAaBA uuuuuu

vvvvvvvv
++⋅++=⋅ , by eq’s (5.5), (5.6), 

( ) ( ) ( ) 332211332111 3312111
... BABABABAaaBAaaBAaaBA uuuuuu ++=⋅+⋅+⋅=⋅ vvvvvvvv

, ⇒ 

[ ] ∑
=

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×=⋅

3

1
3

2

1

321   
i

ii BA
B
B
B

AAABA
vv

     (5.7) 

321

321

321

BBB
AAA
aaa

BA
uuu
vvv

vv
=×        (5.8) 

 

 

■ Metric coefficients 

When the coordinate changes from ( )321 ,, uuu  to ( )3211 ,, uuduu + , the observation point P 

moves along the direction of 
1uav  by a differential length of 111 duhdl ⋅= , where 1h  

denotes the metric coefficient of 1u . The same rule applies to 2u  and 3u  as well. Note that 

1=ih  only if iu  represents a quantity of “length”. 
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When the coordinate changes from ( )321 ,, uuu  to ( )332211 ,, duuduuduu +++ , the 

observation point P moves by a differential displacement of ∑
=

=
3

1
1

i
iu dlald vv
, defining an 

enclosed differential volume of ∏
=

=
3

1i
idldv . 

 

 

■ Cartesian coordinate system 

1) ( ) ( )zyxuuu ,,,, 321 =  (Fig. 5-3). 

2) The base vectors { }3 2, ,1  , =ia
iu

v  are independent of the observation point. 

3) Since { }zyx ,,  are all quantities of “length”, the metric coefficients and differential 

volume are: 

{ }1321 === hhh , dxdydzdv =       (5.9) 

 
Fig. 5-3. Positioning of one point in the Cartesian coordinate system (after DKC). 

 

 

■ Cylindrical coordinate system 

1) ( ) ( )zruuu ,,,, 321 φ=  (Fig. 5-4a). 

2) Two of the base vectors { }φaar
vv ,  change with the polar angle φ  of the observation 

point (Fig. 5-4b). 
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3) When the coordinate changes from ( )zr ,,φ  to ( )zdr ,, φφ + , the observation point P 

moves along the direction of φav  by a differential length of φφ drdl ⋅= , ⇒ rh =2 . The 

metric coefficients and differential volume are (Fig. 5-4c): 

{ }1,  ,1 321 === hrhh , dzrdrddv φ=      (5.10) 

 
Fig. 5-4. (a) Positioning of one point, (b) the two −φ dependent base vectors, (c) the differential volume of 

the cylindrical coordinate system (after DKC). 

 

 

■ Cylindrical coordinate transformation 

1) Transformation of position representation (Fig. 5-4b): 

(a) Cylindrical ( )zrP ,,φ  → Cartesian ( )zyxP ,, : 

φcosrx = , φsinry = , zz =        (5.11) 

(b) Cartesian ( )zyxP ,,  → cylindrical ( )zrP ,,φ : 



Electromagnetics                    P5-6 

Edited by: Shang-Da Yang 

22 yxr += , ( )xy1tan−=φ , zz =       (5.12) 

2) Transformation of the vector components: 

A vector V
v

 can be represented in the cylindrical coordinate system 

zzrr AaAaAaV vvvv
++= φφ  or in the Cartesian coordinate system zzyyxx AaAaAaV vvvv

++= , 

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

r

z

y

x

A
A
A

A
A
A

φφφ
φφ

100
0cossin
0sincos

      (5.13) 

Proof: ( ) zxzxrxrxzzrrxx AaaAaaAaaaAaAaAaaVA )()()( vvvvvvvvvvvv
⋅+⋅+⋅=⋅++=⋅= φφφφ . By 

observing Fig. 5-4b, φφ φ sincos AAA rx −= . 

 

 

■ Spherical coordinate system 

1) ( ) ( )φθ ,,,, 321 Ruuu =  (Fig. 5-5a). 

2) All of the base vectors { }φθ aaaR
vvv ,,  change with the azimuthal angle θ  and the polar 

angle φ  of the observation point (Fig. 5-5a). 

3) When the coordinate changes from ( )φθ ,,R  to ( )φθθ ,, dR + , the observation point P 

moves along the direction of θav  by a differential length of θθ dRdl ⋅= , ⇒ Rh =2 . 

When the coordinate changes from ( )φθ ,,R  to ( )φφθ dR +,, , the observation point P 

moves along the direction of φav  by a differential length of φθφ dRdl ⋅= sin , ⇒ 

θsin3 Rh = . The metric coefficients and differential volume are (Fig. 5-5b): 

{ }θsin,  ,1 321 RhRhh === ,  φθθ ddRdRdv ⋅= sin2    (5.14) 

Spherical coordinate system is useful when the observer is very far away from the source 
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region. 

 
Fig. 5-5. (a) Positioning of one point, (b) the differential volume of the spherical coordinate system (after 

DKC). 

 

 

■ Spherical coordinate transformation 

1) Transformation of position representation (Fig. 5-5a): 

(a) Spherical ( )φθ ,,RP  → Cartesian ( )zyxP ,, : 

φθ cossinRx = , φθ sinsinRy = , θcosRz =     (5.15) 

(b) Cartesian ( )zyxP ,,  → cylindrical ( )φθ ,,RP : 

222 zyxR ++= , ( )zyx 221tan += −θ  ( )xy1tan −=φ   (5.16) 
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2) Transformation of the vector components: 

A vector V
v

 can be represented in the spherical coordinate system 

φφθθ AaAaAaV RR
vvvv

++=  or in the Cartesian coordinate system zzyyxx AaAaAaV vvvv
++= , 

where 
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    (5.17) 

Proof: ( ) φφθθφφθθ AaaAaaAaaaAaAaAaaVA xxRxRxRRxx )()()( vvvvvvvvvvvv
⋅+⋅+⋅=⋅++=⋅= . 

By observing Fig. 5-5b, φφθφθ φθ sincoscoscossin AAAA Rx −+= . 

 

<Comment> 

1) By eq’s (5.13), (5.17), an arbitrary vector V
v

 in the cylindrical (spherical) coordinate 

system is uniquely specified only if the position of observation, i.e., the variable φ  

(variables φ , θ ), is fixed. 

2) Transformation of position representation can be regarded as transformation of “position 

vector” components. 

(a) Cylindrical: ( )zrP ,,φ  means zaraP zr
vvv

+= , ⇒ ( ) ( )zrAAA zr ,0,,, =φ . By eq. (5.13), 
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, consistent with eq. (5.11). The dependence on 

φ  comes from the base vector rav . 

(b) Spherical: ( )φθ ,,RP  means RaP R
vv

= , ⇒ ( ) ( )0,0,,, RAAAR =φθ . By eq. (5.17), 
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, consistent with eq. (5.15). 
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The dependence on θ  and φ  comes from the base vector Rav . 

 

 

5.3 Vector Calculus 

■ Gradient: definition and physical meaning 

 
Fig. 5-6. Illustration of gradient of a scalar field V (after DKC). 

For a scalar field ),,( 321 uuuV , consider two “equi-potential” surfaces 11 : VVS =  and 

dVVVS +=′ 11 :  (Fig. 5-6). The shortest distance between an observation point 11 SP ∈  and 

the surface 1S ′  would be ndPP v=21 , where dnand n
vv =  is a vector pointing to 1S ′  (thus 

0>dn ) and normal to 1S  at 1P . The space rate of change of the scalar field V  along some 

arbitrary direction ld
v

, i.e., dldV , is maximized when ndld vv
// . The gradient of a scalar 

field V  is a vector field, whose magnitude and direction characterize the maximum space 

rate of increase of V : 

dn
dVaV n

v≡∇         (5.18) 

 

<Comment> 

If 0>dV  (the field increases along nav ), naV v//∇ . If 0<dV  (the field decreases along 

nav ), )//( naV v−∇ . ⇒ V∇  always points along the direction of field “increase”. 
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■ Gradient: formulas of evaluation 

Consider an arbitrary point 13 SP ′∈  (Fig. 5-6), 
αcos31

dndlPP == , ⇒ == αcos
dn
dV

dl
dV  

( )ln aaV vv ⋅∇ . ⇒ The space rate of increase of the scalar field V  along any direction 

dlald l
vv

=  is: 

( ) laV
dl
dV v⋅∇=        (5.19) 

In a 3-D coordinate system ( )321 ,, uuu , the change of the scalar field dV  due to a 

displacement 321 321
dladladlald uuu

vvvv
++=  can be represented by: 

3
3

2
2

1
1

dl
l
Vdl

l
Vdl

l
VdV

∂
∂

+
∂
∂

+
∂
∂

= . 

Eq. (5.19) is equivalent to ( ) ldVdV
v

⋅∇= . By the representations of dV  and ld
v

, we have: 

( ) ( )3213
3

2
2

1
1

321
dladladlaVdl

l
Vdl

l
Vdl

l
V

uuu
vvv ++⋅∇=

∂
∂

+
∂
∂

+
∂
∂ . 

By comparison both sides of the equality, V∇  must be 
321

321 l
Va

l
Va

l
VaV uuu ∂

∂
+

∂
∂

+
∂
∂

=∇ vvv . 

Since the differential length idl  due to the change of variable iu  by a small amount of idu  

is iii duhdl =  ( ih  is the metric coefficient of iu ), ⇒ 

332211
321 uh

Va
uh

Va
uh

VaV uuu ∂
∂

+
∂

∂
+

∂
∂

=∇ vvv      (5.20) 

In Cartesian coordinates, ( ) ( )zyxuuu ,,,, 321 = , { }1321 === hhh  [eq. (5.9)], 

z
Va

y
Va

x
VaV zyx ∂

∂
+

∂
∂

+
∂
∂

=∇ vvv      (5.21) 

 

 

 

■ Divergence: definition and physical meaning 

Vector field A
v

 can be illustrated by “flux lines”, such that the field magnitude A
v

 is 

measured by the number of flux lines passing through a unit surface normal to the vector. 
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Fig. 5-7. Flux lines of a vector field (after DKC). 

If A
v

 represents the directed flow density, ∫∫ ⋅
S

sdA
 
 vv

 represents the total flow over an open 

surface S . For a volume V  enclosed by a closed surface S , the outward flux ∫ ⋅
S

sdA
 

vv
 

will be positive(negative) only if the volume contains a “flow source(sink)”. The divergence 

of a vector field A
v

 is a scalar field characterizing the net outward flux per unit volume: 

v

sdA
A S

v Δ

⋅
≡⋅∇ ∫

→Δ

 
0

lim
vv

v
,       (5.22) 

which is used to characterize the flow source(sink) quantitatively. 

 

 

■ Divergence: formulas of evaluation 

In the Cartesian coordinate system, consider a vector field zzyyxx AaAaAazyxA vvvv
++=),,(  

and an infinitesimal cuboid vΔ  centered at ),,( 000 zyxP  with side lengths xΔ , yΔ , zΔ , 

respectively (Fig. 5-8). 

 

Fig. 5-8. A differential volume in the Cartesian coordinate system used to derive eq. (5.23) (after DKC). 
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1) On the front face 
2

: 01
xxxS Δ

+= , the outward flux is ∫∫ ⋅=
1 1  

S
sdAF vv

, where 

zyasd x ΔΔ= vv . Although the vector field ),,( zyxA
v

 is a “function” of position, we can 

approximate it by a “constant” vector ),,2( 000 zyxxA Δ+
v

 on the infinitesimal surface 

1S  of the cuboid. ⇒ ( ) ( )zyzyxxAF x ΔΔ⋅Δ+≈ 0001 ,,2 . By the first-order Taylor series 

approximation, ( ) ( )
( ) 2

,,,,2
000 ,,

000000
x

x
AzyxAzyxxA

zyxP

x
xx

Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+≈Δ+ , ⇒ 

( ) ( )
( ) 2

,,
000 ,,

0001
zyx

x
AzyzyxAF

zyxP

x
x

ΔΔΔ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+ΔΔ⋅≈ . 

Since zyx ΔΔΔ  is the volume of the cuboid (denoted by vΔ ), we have: 

( ) ( )
( ) 2

,,
000 ,,

0001
v

x
AzyzyxAF

zyxP

x
x

Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+ΔΔ⋅≈  

2) On the back face 
2

: 02
xxxS Δ

−= , the outward flux is ∫∫ ⋅=
2 2  

S
sdAF vv

, where 

zyasd x ΔΔ−= vv . We approximate ),,( zyxA
v

 by a “constant” vector ),,2( 000 zyxxA Δ−
v

 

on the infinitesimal surface 2S  of the cuboid. ⇒ ( ) ( )zyzyxxAF x ΔΔ−⋅Δ−≈ 0002 ,,2 . 

By the first-order Taylor series approximation, 

( ) ( )
( ) 2

,,,,2
000 ,,

000000
x

x
AzyxAzyxxA

zyxP

x
xx

Δ

⎥
⎥
⎦

⎤
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⎡

∂
∂

−≈Δ− , ⇒ 

( ) ( )
( ) 2

,,
000 ,,
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v

x
AzyzyxAF
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x
x

Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+ΔΔ⋅−≈ . 

The total outward flux for the front and back surfaces 1S  and 2S  becomes: 

( )
v

x
AFF

zyxP

x Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

=+
000 ,,

21 . 
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3) The same strategy can be used for the remaining four surfaces of the cuboid. The total 

outward flux for the cuboid becomes: v
z
A

y
A

x
AFsdA

zyxP

zyx

n
nS

Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+
∂

∂
+

∂
∂

==⋅ ∑∫
= ),,(

6

1
 

000

vv
. 

By eq. (5.22), the divergence of ),,( zyxA
v

 at ),,( 000 zyxP  is 
v

sdA
S

v Δ

⋅∫
→Δ

 

0
lim

vv

, ⇒ 

z
A

y
A

x
AA zyx

∂
∂

+
∂

∂
+

∂
∂

=⋅∇
v

       (5.23) 

For other orthogonal coordinate systems, eq. (5.23) is generalized to eq. (2-110) of the 

textbook. 

 

 

■ Divergence theorem 

The definition of divergence [eq. (5.22)] implies that the total outward flux of a vector field 

over a closed surface S  is equal to the volume integral of the divergence of the vector field 

over the volume V  enclosed by S : 

( )∫∫ ⋅∇=⋅
VS

dvAsdA
  

vvv
       (5.24) 

This fact can be shown by subdividing the volume V  into many small areas, where the 

contributions of flux from the internal surfaces of adjacent small elements will cancel with 

one another (Fig. 5-9). 

 

Fig. 5-9. Subdivided volumes for proof of the divergence theorem (after DKC). 
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■ Curl: definition and physical meaning 

If the vector field A
v

 represents a field of force, the “work” done by the force in moving 

some object around a closed path (contour) C  (i.e., the energy obtained by the object when 

traveling along C ) is: 

∫ ⋅≡
C

ldA
 
 nCirculatio

vv
       (5.25) 

A “conservative force” A
v

 produces no circulation, because 0
 

=⋅∫C
ldA
vv

 for any contour C . 

In other words, a conservative force does not drive objects circularly. If a non-conservative 

force A
v

 has nonzero circulation for an infinitesimal contour C  around a point P, it forms a 

vortex source at P that drives circulating flows. To quantitatively measure the strength and 

direction of a vortex source, we define the curl of a vector field A
v

 as a vector field, whose 

(1) magnitude represents the net circulation per unit area, and (2) direction is the normal 

direction nav  of the differential contour maxC  (with area sΔ ) which is oriented to maximize 

the circulation. 

s

ldAa
A Cn

s Δ

⎟
⎠
⎞⎜

⎝
⎛ ⋅

≡×∇
∫

→Δ

max 

0

  
lim

vvv
v

      (5.26) 

 

 

■ Curl: formulas of evaluation 

The circulation per unit area of a vector field A
v

 along an arbitrarily oriented contour uC  

(with area usΔ  and unit normal vector uav ) is: 

( ) u
u

C

s
aA

s

ldA
u

u

vv
vv

⋅×∇=
Δ

⋅∫
→Δ

 

0

  
lim       (5.27) 

 

In the Cartesian coordinate system, we can derive the x-component of A
v

×∇  by considering 
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a vector field zzyyxx AaAaAazyxA vvvv
++=),,(  and an infinitesimal rectangular contour xC  

centered at ),,( 000 zyxP  with a unit normal vector xav  and side lengths yΔ , zΔ , 

respectively (Fig. 5-10). 

 
Fig. 5-10.  A differential area in Cartesian coordinates used to derive x-component of eq. (5.22) (after DKC). 

1) On the path 1, i.e., [ ]{ } 2,2  ),,2,( 0000 zzzzzzyyx Δ+Δ−=Δ+ , the work done by the 

force is ∫ ⋅=
1 1  ldAW

vv
, where zald zΔ= vv

. Although the vector field ),,( zyxA
v

 is a 

“function” of position, we can approximate it by a “constant” vector ),2,( 000 zyyxA Δ+
v

 

on the infinitesimal path 1. ⇒ ( ) ( )zzyyxAW z Δ⋅Δ+≈ 0001 ,2, . By the first-order Taylor 

series approximation, ( ) ( )
( ) 2
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∂
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⎥
⎦
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∂

+Δ⋅≈ . 

Since zyΔΔ  is the area of the rectangle (denoted by sΔ ), we have: 

( ) ( )
( ) 2

,,
000 ,,

0001
s

y
AzzyxAW

zyxP

z
z

Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+Δ⋅≈  

2) On the path 3, i.e., [ ]{ } 2,2  ),,2,( 0000 zzzzzzyyx Δ+Δ−=Δ− , the work done by the 

force is ∫ ⋅=
3 3  ldAW

vv
, where zald zΔ−= vv

. We approximate ),,( zyxA
v

 by a “constant” 
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vector ),2,( 000 zyyxA Δ−
v

 on the infinitesimal path 3. ⇒ 

( ) ( )zzyyxAW z Δ⋅Δ−−≈ 0003 ,2, . By the first-order Taylor series approximation, 

( ) ( )
( ) 2

,,,2,
000 ,,

000000
y

y
A

zyxAzyyxA
zyxP

z
zz

Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−≈Δ− , ⇒ 

( ) ( )
( ) 2

,,
000 ,,

0003
s

y
A

zzyxAW
zyxP

z
z

Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+Δ⋅−≈ . 

The total work done along the path 1 and path 3 becomes: 

( )
s

y
A

WW
zyxP

z Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

=+
000 ,,

31  

3) The same strategy can be applied to the remaining path 2 and path 4. The total circulation 

due to contour xC  becomes: 
( )

s
z

A
y
AldA

zyxP

yz Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−
∂
∂

=⋅∫
000 ,,

3412 
    

vv
. By eq. (5.27), the 

x-component of A
v

×∇  is: 

( )
( )⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−
∂
∂

=
Δ

⋅
=⋅×∇

∫
→Δ

000 ,,

 

0

  
lim

zyxP

yzC

sx z
A

y
A

s

ldA
aA x

vv

vv
. 

We can further derive the y- and z-component of A
v

×∇  by examining the circulation due 

to contour yC  and zC , respectively. As a result, A
v

×∇  in the Cartesian coordinate 

system can be formulated as: 

zyx

zyx

AAA
zyx

aaa
A ∂∂∂∂∂∂=×∇

vvv
v

      (5.28) 

For other orthogonal coordinate systems, eq. (5.28) is generalized to eq. (2-137) of the 

textbook. 
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■ Stokes’ theorem 

The definition of curl [eq. (5.26)] implies that the total circulation of a vector field over a 

contour C  is equal to the surface integral of the curl of the vector field over the open 

surface S  bounded by C : 

( )∫∫ ⋅×∇=⋅
SC

sdAldA
  

 vvvv
       (5.29) 

This fact can be shown by subdividing the open surface S  into many small areas, where the 

contributions from the internal boundaries of adjacent small elements will cancel with one 

another (Fig. 5-11). 

 

Fig. 5-11. Subdivided areas for proof of Stokes’ theorem (after DKC). 

 

<Comment> 

Gradient, divergence, and curl are all “point” functions, describing “local” field behaviors. 

 

■ Laplacian: definition and physical meaning 

Gradient, divergence, and curl are all first-order differential operators. In EM theory, however, 

we need to deal with second-order derivatives of scalar and vector fields. Laplacian of a 

scalar field V  is another scalar field defined as: 

( )VV ∇⋅∇≡∇ 2        (5.30) 

To show the meaning of Laplacian, take a scalar function of single variable )(xf  as an 

example. 
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Δ
Δ−−Δ+

=
→Δ

)2/()2/(lim
0

xfxf
dx
df ; 

⎥⎦
⎤

⎢⎣
⎡

Δ
Δ−−

−
Δ

−Δ+
Δ

=
Δ

Δ−′−Δ+′
=

→Δ→Δ

)()()()(1lim)2/()2/(lim
002

2 xfxfxfxfxfxf
dx

fd  

( )ffxfxfxf
−∝⎥⎦

⎤
⎢⎣
⎡ −

Δ−+Δ+
Δ

=
→Δ

)(
2

)()(2lim 20
. 

This means that the second-order derivative of )(xf , i.e., 2

2

dx
fd , describes the difference 

between the “field value f “ and the “average field value f ” of its surrounding points. As a 

result, the scalar Laplacian of a scalar field of multiple variables V , i.e., V2∇ , has the 

similar meaning. 

 

Laplacian of a vector field A
v

 is another vector field defined as: 

( ) AAA
vvv

×∇×∇−⋅∇∇≡∇2       (5.31) 

 

 

■ Laplacian: formulas of evaluation 

In the Cartesian coordinate system, we can substitute eq’s (5.21), (5.23) into eq. (5.30) to 

obtain: 

2

2

2

2

2

2
2

z
V

y
V

x
VV

∂
∂

+
∂
∂

+
∂
∂

=∇       (5.32) 

Similarly, we can substitute eq’s (5.21), (5.23), (5.28) into eq. (5.31) to obtain: 

( ) ( ) ( )zzyyxx AaAaAaA 2222 ∇+∇+∇=∇ vvvv
     (5.33) 

Laplacian formulas for cylindrical and spherical coordinates can be found in the inside of 

back cover of the textbook. 

 

 

■ Null identities 

Two identities involving with repeated del (∇ ) operations are important for the concept of 
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potential functions (DKC Ch3, Ch6): 

( ) 0=∇×∇ V         (5.34) 

⇒ A conservative (curl-free) vector field can be expressed as the gradient of a scalar field 

(electrostatic potential). 

( ) 0=×∇⋅∇ A
v

        (5.35) 

⇒ A solenoidal (divergence-free) vector field can be expressed as the curl of another vector 

field (magnetostatic potential). Eq’s (5.34), (5.35) can be easily proven in the Cartesian 

coordinate system. 

 

 

■ Helmholtz’s theorem (decomposition) 

A vector field F
v

 is uniquely determined if both its divergence and curl are specified 

everywhere. As a result, we will introduce electric and magnetic vector fields by specifying 

their divergence and curl (fundamental postulates) first. 

 

A vector field F
v

 can be decomposed into: 

1) The curl-free (irrotational) component iF
v

, with 

⎪⎩

⎪
⎨
⎧

=×∇

=⋅∇

0i

i

F
gF

v

v

, 

where g  represents the flow source generating F
v

. By eq. (5.34), VFi −∇=
v

, where V  

represents the scalar potential of F
v

. 

2) The divergence-free (solenoidal) component sF
v

, with 

⎪⎩

⎪
⎨
⎧

=×∇

=⋅∇

GF

F

s

s
vv

v
0

, 
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where G
v

 represents the vortex source generating F
v

. By eq. (5.35), AFs

vv
×∇= , where 

A
v

 represents the vector potential of F
v

. 

As a result, 

AVFFF si

vvvv
×∇+−∇=+= ,      (5.36) 

i.e., a vector field can also be determined by specifying its scalar and vector potentials. 

 


