Electromagnetics P5-1

Lesson 05 Vector Analysis

m Introduction

1) Physical quantities in EM could be scalar (charge, current, energy) or vector (EM fields).

2) Specifying a vector in a 3-D space requires three numbers, depending on the choice of a
coordinate system. However, EM laws are independent of coordinate system of use.

3) The use of vector analysis in EM is not necessary (e.g., James Maxwell’s original work),

but will lead to elegant formulations.

5.1 Vector Algebra

m \ector addition and subtraction

Fig. 5-1. lllustration of vector addition: C = A+ B (after DKC).

m Dot (inner) product

The dot product of two vectors A and B is a scalar equal to the product of |A| and the
“projection” of B on A:

A-B = |Al|Bcosb,, (5.1)
where 6,, =[0,7] is the smaller included angle. Dot product is commutative (A-B =B-A)

and distributive [A-(B+C)=A-B+A-C].
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m Cross (outer) product

The cross product of two vectors A and B is a vector:

AxB:én

Al-|B|-sin O, (5.2)

where a_ is a unit vector normal to A and B (in the direction of the right thumb when
the four fingers rotate from A to B), 0,5 =[0,7] is the smaller included angle. Cross
product is neither commutative (Ax B = Bx A) nor associative [AX(BXC)?& (Ax B)xC],

but is distributive [Ax (B+C) = AxB+ AxC].

m Product of three vectors

1) Scalar triple product:

A(Bxé)zg(éx,&)zé(ﬁ\xg) (5.3)
Its magnitude represents the volume of the parallelepiped (Fig. 5-2).
4
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Area = |[B x C| B
Fig. 5-2. Illustration of scalar triple product: A-(BxC) (after DKC).

2) Vector triple product:

Ax(BxC)=B(A-C)-C-(A-B) (5.4)

5.2 Orthogonal Coordinate Systems
m Definition and basic properties
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A point in a 3-D orthogonal coordinate system can be located as the intersection of three

“curved”, mutually perpendicular surfaces represented by {u, =constant, i=1, 2, 3}. The

three base vectors (unit vectors in the directions of coordinate axes) {aui } satisfy with:

a, x4, =4, , (i,j.k) =(123), (231), (3.12) (5.5)
i a s fOITI%] s
U; uj_ij_Lifi:j’ ()

Eq’s (5.1), (5.2) can also be evaluated by linear algebra formulas if the involved vectors are

represented by the linear combination of the base vectors of some orthogonal coordinate

system: A=a, A +a, A, +a,A, B=4a,B +a,B,+a,B,:

A-B=(a, A +a, A +a,A)(a,B, +a, B, +a,B,) byeqs (55), (56),
A-B=(a,-a, JAB, +(a, -4, JAB, +..(a, -a, JAB, = AB, + AB, + AB,, =
A-B=[A A Alx|B,|=D AB (5.7)
83 i=1
a“l aUz aua
AxB=|A A, A (5.8)
Bl BZ B3

m Metric coefficients

When the coordinate changes from (u,,u,,u,) to (u, +du,,u,,u,), the observation point P

moves along the direction of &, by a differential length of dl, =h,-du,, where h,

Uy
denotes the metric coefficient of u,. The same rule appliesto u, and u, as well. Note that

h, =1 only if u;, represents a quantity of “length”.
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When the coordinate changes from (u,,u,,u;) to (u, +du,,u, +du,,u, +du,), the

3
observation point P moves by a differential displacement of dl =Zau1dli, defining an
i=1

3
enclosed differential volume of dv=] JdI, .

1)
2)

3)

1)

2)

X

i=1

Cartesian coordinate system

(ul’u27u3)= (X1 Y, Z) (Fig. 5-3).

The base vectors {a i=12, 3} are independent of the observation point.

u; !
Since {x, y,z} are all quantities of “length”, the metric coefficients and differential

volume are:

{h,=h,=h, =1}, dv=dxdydz (5.9)

= ¥, plane

/

x = x; plane

¥ =y, plane

Fig. 5-3. Positioning of one point in the Cartesian coordinate system (after DKC).

Cylindrical coordinate system
(u,,u,,u,)=(r,4,2) (Fig. 5-4a).

Two of the base vectors {ar,@} change with the polar angle ¢ of the observation
point (Fig. 5-4b).
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3) When the coordinate changes from (r,4,z) to (r,¢+dg,z), the observation point P
moves along the direction of a, by a differential length of dl, =r-d¢, = h, =r.The

metric coefficients and differential volume are (Fig. 5-4c):

{h,=1 h,=r,h, =1}, dv=rdrdgdz (5.10)

z =z, plane z

cylinder /
X =9,
half-plane
(b) (c) -
1
I
(0] | :y |
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/// _:_-\ b =y
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Fig. 5-4. (a) Positioning of one point, (b) the two ¢ — dependent base vectors, (c) the differential volume of

the cylindrical coordinate system (after DKC).

m Cylindrical coordinate transformation
1) Transformation of position representation (Fig. 5-4b):
(a) Cylindrical P(r,¢,z) — Cartesian P(x,y,z):
X=rcos¢, y=rsing, z=z (5.11)

(b) Cartesian P(x,y,z) — cylindrical P(r,¢,2):
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2)

1)

2)

3)

r=yx’+y?, g=tan(y/x), z=2 (5.12)

Transformation of the vector components:

A vector V can be represented in the cylindrical coordinate system
V =aA +a,A,+3,A, orin the Cartesian coordinate system V =a,A, +a A, +a,A,,
where

A, cosg —sing Of A
A, |=|sing cosg OfA, (5.13)
A, 0 0 1| A,

Proof: A =V-a, =(a,A +8,A, +a,A,)-a =(a -a,)A +(d,-8)A, +(a, -a,)A,. By

observing Fig. 5-4b, A, = A cosg—A;sing.

Spherical coordinate system
(u;,u,,u,)=(R,8,4) (Fig. 5-5a).

All of the base vectors {a,,a,,d,} change with the azimuthal angle & and the polar

angle ¢ of the observation point (Fig. 5-5a).

When the coordinate changes from (R,8,¢) to (R,0+d#@,4), the observation point P
moves along the direction of a, by a differential length of dl, =R-d@, = h, =R.
When the coordinate changes from (R,8,¢) to (R,6,¢+dg), the observation point P
moves along the direction of a, by a differential length of dl, =Rsing-d¢, =

h, = Rsin@. The metric coefficients and differential volume are (Fig. 5-5b):

{h, =1, h, =R,h, = Rsing}, dv=R?sin@-dRd&d¢ (5.14)

Spherical coordinate system is useful when the observer is very far away from the source
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region.

“--Hy

P=¢
half-plane

(b) z

X

Fig. 5-5. (a) Positioning of one point, (b) the differential volume of the spherical coordinate system (after
DKC).

m Spherical coordinate transformation
1) Transformation of position representation (Fig. 5-5a):
(a) Spherical P(R,8,¢) — Cartesian P(x,y,z):
X =Rsindcos¢g, y=Rsingsing, z=Rcosé (5.15)

(b) Cartesian P(x,y,z) — cylindrical P(R,8,4):
R=yx*+y?+22, 0= tan‘l(\/x2 + yz/z) ¢ =tan"(y/x) (5.16)
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2) Transformation of the vector components:
A vector V can be represented in the spherical coordinate system

V =aA, +d,A, +d,A, orinthe Cartesian coordinate system V =a,A, +a,A, +a,A,,

where
A, singdcosg cosdcosg —sing | Ag
A, |=|sinfsing cosfsing cosg | A, (5.17)
A, cosé —-siné 0 A,

Proof: A =V-a, =(a,A, +3,A, +8,A, )-8, = (3 -8,) A, + (3, -a)A, + (3, -&)A, -

By observing Fig. 5-5b, A, = A;sin@cosg+ A, cosdcosg— A, sing.

<Comment>

1) By eq’s (5.13), (5.17), an arbitrary vector V in the cylindrical (spherical) coordinate
system is uniquely specified only if the position of observation, i.e., the variable ¢
(variables ¢, 0), is fixed.

2) Transformation of position representation can be regarded as transformation of “position

vector” components.

(a) Cylindrical: P(r,4,z) means P=a,r+a,z, = (A,A, A )=(r02). Byeq. (5.13),

A, cosg —sing Ofr I cos¢
A, |=|sing cosg 0] 0|=|rsing |, consistent with eq. (5.11). The dependence on
A, 0 0 1|z z

¢ comes from the base vector a

re

(b) Spherical: P(R,0,¢) means P=a.R, = (A, A, A,)=(R00). By eq. (5.17),

A, sinfdcos¢ cos@dcosg —sing| R Rsin&cos ¢
A, |=|sinfsing cosfsing cosg | 0|=|Rsindsing |, consistent with eq. (5.15).
A, cosé —-siné 0 0 Rcosé
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The dependence on ¢ and ¢ comes from the base vector & .

5.3 Vector Calculus

m Gradient: definition and physical meaning

Fig. 5-6. lllustration of gradient of a scalar field V (after DKC).

For a scalar field V(u,,u,,u,), consider two “equi-potential” surfaces S,:V =V, and

S/:V =V, +dV (Fig. 5-6). The shortest distance between an observation point P, €S, and
the surface S; would be @:|dﬁ|, where dn=a,dn is a vector pointing to S/ (thus
dn>0)andnormalto S, at P,. The space rate of change of the scalar field V along some

arbitrary direction dI , i.e., |dV|/dl, is maximized when dI /dn. The gradient of a scalar

field V is a vector field, whose magnitude and direction characterize the maximum space

rate of increase of V :

VVW=a — (5.18)

<Comment>

If dV >0 (the field increases along a,), VV//a,. If dV <0 (the field decreases along

a,), Vll(-a)).= VV always points along the direction of field “increase”.
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m Gradient: formulas of evaluation

Consider an arbitrary point P,eS; (Fig. 5-6), PP, =dI _dn v _dv
cosa dl dn

VV|(@,-a). = The space rate of increase of the scalar field V along any direction

di =adl is:

‘ij—\ll =(VV) g, (5.19)

In a 3-D coordinate system (u,,u,,u,), the change of the scalar field dvV due to a

displacement dI = a,dl, +a,dl, +a,dl, can be represented by:

av =N+ Mg+ M,
o, tal, 2 al

Eq. (5.19) is equivalentto dV = (VV)~dT. By the representations of dV and dI , we have:

N+ M, + Nogl, = (vv)-(a, ol +a, dI, +a, dI,).
a, L N

By comparison both sides of the equality, VV must be VV =aulﬁ+a ﬂm v

o, e, ol

Since the differential length dl, due to the change of variable u, by a small amount of du,

is dl. =hdu, (h isthe metric coefficient of u,), =

wea N oia N o NV (5.20)
*hou, 7 h,oou,  hou,
In Cartesian coordinates, (u,,u,,u,)=(x,y,z), {h,=h,=h, =1} [eq. (5.9)],
woa Mg N ,g Y (5.21)

X y_+az_
OX oy 0z

m Divergence: definition and physical meaning

Vector field A can be illustrated by “flux lines”, such that the field magnitude |A| is

measured by the number of flux lines passing through a unit surface normal to the vector.
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Fig. 5-7. Flux lines of a vector field (after DKC).
If A represents the directed flow density, ” SA-d§ represents the total flow over an open

surface S. For a volume V enclosed by a closed surface S, the outward flux §SA-d§

will be positive(negative) only if the volume contains a “flow source(sink)”. The divergence
of a vector field A is a scalar field characterizing the net outward flux per unit volume:
V-A=lim=—, (5.22)

which is used to characterize the flow source(sink) quantitatively.

m Divergence: formulas of evaluation
In the Cartesian coordinate system, consider a vector field A(x,y,z) = a,A +a A +a,A

and an infinitesimal cuboid Av centered at P(x,,Y,,Zz,) Wwith side lengths Ax, Ay, Az,

respectively (Fig. 5-8).

Fig. 5-8. A differential volume in the Cartesian coordinate system used to derive eq. (5.23) (after DKC).
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1) On the front face S,:x=x, +% , the outward flux is F = ”SA-d§ , Where
ds = a,AyAz . Although the vector field A(x,y,z) is a “function” of position, we can
approximate it by a “constant” vector A(X,+Ax/2,Y,,2,) on the infinitesimal surface

S, of the cuboid. = F, ~ A (X, +Ax/2,Y,,2,)-(AyAz). By the first-order Taylor series

approximation, A, (X, +AX/2,Y,,2,)~ A (X, Yo, Zo){% }% N
P(X(erolo)
0 AXAYAZ
I:lz A((Xoayoazo)(AyAZ)"F A —y.
aX P(XD!YD!ZO) 2

Since AxAyAz is the volume of the cuboid (denoted by Av ), we have:

0. A
F~ A (% Yo 2,)- (Ayaz)+| 2% Av
ax P(XOvYOxZo) 2

2) On the back face Sz:x:xo—%, the outward flux is FZ:”SA'd§, where
ds = —a,AyAz . We approximate A(x,y,z) by a “constant” vector A(x, —Ax/2,Y,,Z,)

on the infinitesimal surface S, of the cuboid. = F, = A (X, —AX/2,Y,,7,)- (- AyAz).

By the first-order Taylor series approximation,

Ax(xo —Ax/2,y0,zo)z &(Xoryo’zo)_{%

OX

:IAX
—_—, =
P(X0.Y0:20) 2

oA, Av
Fo~—A (x.y..2.)-(Ayaz)+| O 2
, AX(XO Yo ZO) ( y Z)+|: OX P(xo,yoyzoj 2

The total outward flux for the front and back surfaces S, and S, becomes:

F+F = A Av.
aX P(%.Y0:20)
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3) The same strategy can be used for the remaining four surfaces of the cuboid. The total

_ 6 b
outward flux for the cuboid becomes: §A-d§:2|:n = oA, n A +5Az| AV
S =L ax ay az |P(x0,y0,zo)
. _ _ fA-ds
By eq. (5.22), the divergence of A(X,y,z) at P(X,,Y,.2Z,) IS A“n!) SAV =
~ 0
v A=A O oA (5.23)

ox oy oz
For other orthogonal coordinate systems, eq. (5.23) is generalized to eq. (2-110) of the

textbook.

m Divergence theorem
The definition of divergence [eq. (5.22)] implies that the total outward flux of a vector field
over a closed surface S is equal to the volume integral of the divergence of the vector field

over the volume V enclosed by S:
fA-ds =] (v-Av (5.24)
This fact can be shown by subdividing the volume V into many small areas, where the

contributions of flux from the internal surfaces of adjacent small elements will cancel with

one another (Fig. 5-9).

Fig. 5-9. Subdivided volumes for proof of the divergence theorem (after DKC).
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m Curl: definition and physical meaning

If the vector field A represents a field of force, the “work” done by the force in moving
some object around a closed path (contour) C (i.e., the energy obtained by the object when
traveling along C) is:

Circulation = §CA- dl (5.25)
A “conservative force” A produces no circulation, because fc,&- dl =0 for any contour C.

In other words, a conservative force does not drive objects circularly. If a non-conservative
force A has nonzero circulation for an infinitesimal contour C around a point P, it forms a
vortex source at P that drives circulating flows. To quantitatively measure the strength and
direction of a vortex source, we define the curl of a vector field A as a vector field, whose
(1) magnitude represents the net circulation per unit area, and (2) direction is the normal

direction a, of the differential contour C_.  (with area As) which is oriented to maximize

n max

the circulation.

) an( A.dr)
Vx A= lim——re (5.26)

As—0 AS

m Curl: formulas of evaluation
The circulation per unit area of a vector field A along an arbitrarily oriented contour C,

(with area As, and unit normal vector &, ) is:

A-dl
lim —§°HA

Jim, = =(VxA)a, (5.27)

In the Cartesian coordinate system, we can derive the x-component of Vx A by considering
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a vector field A(x,y,z) = a,A +a,A +a,A, and an infinitesimal rectangular contour C,

centered at P(x,,Y,,Z,) With a unit normal vector a, and side lengths Ay, Az,

respectively (Fig. 5-10).

P(xg, Yo, 20)

Fig. 5-10. Adifferential area in Cartesian coordinates used to derive x-component of eq. (5.22) (after DKC).

1)

2)

On the path 1, i.e., {(X,,Y, +AYy/2,2), z =z, — Az/2,2, + Az/2]}, the work done by the

force is lej'lA-dI_, where dl =a,Az. Although the vector field A(x,y,z) is a
“function” of position, we can approximate it by a “constant” vector A(X,, Y, +Ay/2,2,)

on the infinitesimal path 1. = W, ~ A (x,, Y, + Ay/2,2,)-(Az). By the first-order Taylor

series approximation, A, (X, Y, +Ay/2,2,)~ A (X, Yo, zo)+[% ]% =
P(XO:YO’ZO)
%) AYAz
WlzAZ(xO,yO,zO)-(Az)J{i ]y_
ay P(XOvYOvZO)

Since AyAz is the area of the rectangle (denoted by As), we have:

}g
P(X.Y0:20) 2

Onthe path 3, i.e., {(X,,Y, —AY/2,2), 2=z, —Az/2,2,+ Az/2] }, the work done by the

W, » Az(xo' Yos Zo)'(AZ)+[%

oy

force is W, = LA- di, where dl =-a,Az. We approximate A(x,y,z) by a “constant”
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vector A(X,,Y, —Ay/2,z,) on the infinitesimal path 3. =
W, ~ A (X,, Y, —Ay/2,2,)-(Az). By the first-order Taylor series approximation,

oA, Ay
ay P(x9.Y0.20) 2

}&
P(%0.Y0.20) 2

The total work done along the path 1 and path 3 becomes:

Az(xo’yo —Ay/Z,ZO)z Az(xo’yo’zo)_[

OA
W, z—AZ(XO, yo’zo)'(AZ)""[ ayz

oA, }As
ay P(X0.Y0:20)

3) The same strategy can be applied to the remaining path 2 and path 4. The total circulation

W, +W, —{

- = 0
due to contour C, becomes: LmA-dI _[%—ai
z

}As. By eq. (5.27), the
P(%0.Y0.20)

x-component of VxA is:

A-dl
(VXA).éxznm ii;cx [8Az_aAy| }
As=0  AS 8y 2 P(X9.Y0:20)

We can further derive the y- and z-component of V x A by examining the circulation due

to contour C, and C,, respectively. As a result, Vx A in the Cartesian coordinate

system can be formulated as:

a a a

VxAz@/gX a/jay a/fsz (5.28)
A A A

For other orthogonal coordinate systems, eq. (5.28) is generalized to eq. (2-137) of the

textbook.
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m Stokes’ theorem
The definition of curl [eq. (5.26)] implies that the total circulation of a vector field over a
contour C is equal to the surface integral of the curl of the vector field over the open

surface S bounded by C:
§A-dl =] (VxA)ds (5.29)
This fact can be shown by subdividing the open surface S into many small areas, where the

contributions from the internal boundaries of adjacent small elements will cancel with one

another (Fig. 5-11).

Fig. 5-11. Subdivided areas for proof of Stokes’ theorem (after DKC).

<Comment>

Gradient, divergence, and curl are all “point” functions, describing “local” field behaviors.

m Laplacian: definition and physical meaning
Gradient, divergence, and curl are all first-order differential operators. In EM theory, however,
we need to deal with second-order derivatives of scalar and vector fields. Laplacian of a
scalar field V is another scalar field defined as:

VAV =V-(VV) (5.30)
To show the meaning of Laplacian, take a scalar function of single variable f(x) as an

example.
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df i fX+A12) — f(x=A/2)

d)( A—0 A
dZI _lim f’(X—i—A/Z)—f'(X—A/Z):Iiml[f(X—FA)—f(x)_ f(X)—f(X—A)}
dx A0 A A0 A A A
i 2| F(X+A)+ f(x=A) (7
—ALIB“HAZ[ 2 f(X)} (f f).

2
This means that the second-order derivative of f(x), i.e., c:j—I describes the difference
X

between the “field value f “ and the “average field value f ” of its surrounding points. As a

result, the scalar Laplacian of a scalar field of multiple variables V , i.e., V?V , has the

similar meaning.
Laplacian of a vector field A is another vector field defined as:

VZA=V(V-A)-VxVxA (5.31)

m Laplacian: formulas of evaluation

In the Cartesian coordinate system, we can substitute eq’s (5.21), (5.23) into eq. (5.30) to

obtain:
V&V = az\g + 82\2 + az\g (5.32)
ox® oy- oz
Similarly, we can substitute eq’s (5.21), (5.23), (5.28) into eq. (5.31) to obtain:
VZA=4,(V2A )+4,(V2A )+ 4, (V2A,) (5.33)

Laplacian formulas for cylindrical and spherical coordinates can be found in the inside of

back cover of the textbook.

m Null identities

Two identities involving with repeated del (V) operations are important for the concept of
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potential functions (DKC Ch3, Ch6):

Vx(VV)=0 (5.34)
= A conservative (curl-free) vector field can be expressed as the gradient of a scalar field
(electrostatic potential).

V-(VxA)=0 (5.35)
= A solenoidal (divergence-free) vector field can be expressed as the curl of another vector
field (magnetostatic potential). Eq’s (5.34), (5.35) can be easily proven in the Cartesian

coordinate system.

m Helmholtz’s theorem (decomposition)

A vector field F is uniquely determined if both its divergence and curl are specified
everywhere. As a result, we will introduce electric and magnetic vector fields by specifying

their divergence and curl (fundamental postulates) first.

Avector field F can be decomposed into:

1) The curl-free (irrotational) component F , with

V-F =g
Vxlfi:O’

where g represents the flow source generating F . By eq. (5.34), F =-VV , where V

represents the scalar potential of F .

2) The divergence-free (solenoidal) component F,, with
V-F,=0
V x IfS =G’
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where G represents the vortex source generating F . By eq. (5.35), F, =VxA, where

A represents the vector potential of F .

As a result,

F=F+F =-VV+VxA, (5.36)

i.e., a vector field can also be determined by specifying its scalar and vector potentials.
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