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Lesson 04 Steady-state Response of Transmission Lines 

 

■ Introduction 

Though there are infinitely many types of excitation waveforms, it is of particular importance 

to consider the response of transmission lines to sinusoidal excitations. The fundamental 

reasons are twofold: (1) The electrical power and communication signals are often 

transmitted as sinusoids or modified sinusoids. (2) Any non-sinusoidal signals can be treated 

as superposition of sinusoids of different frequencies (Fourier analysis). The initial onset of a 

sinusoidal excitation produces a natural (transient) response, which will decay rapidly in time 

(Example 3-2). In contrast, the forced (steady-state) response supported by the sinusoidal 

source will continue indefinitely. In this lesson, we will employ two powerful tools, i.e., 

phasors and complex impedances (commonly used in alternating-circuit lumped circuit 

analysis) to show the rich phenomena of waves. 

 

 

■ Phasor representations of transmission line equations and solutions 

When the steady-state due to a sinusoidal excitation is reached, the voltage ),( tzv  and the 

current ),( tzi  on the transmission line must also be sinusoidal waves, which can be 

represented by the z-dependent phasors )(zV , )(zI : 

{ }tjezVtzv ω⋅= )(Re),( , { }tjezItzi ω⋅= )(Re),(      (4.1) 

The lossless transmission line equations, i.e., eq’s (2.1-4), can be rewritten as: 

)()( zILjzV
dz
d

⋅−= ω        (4.2) 

)()( zVCjzI
dz
d

⋅−= ω        (4.3) 

)()( 2
2

2

zVzV
dz
d β−=        (4.4) 
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)()( 2
2

2

zIzI
dz
d β−=        (4.5) 

where n

n

t∂
∂  is replaced by nj )( ω , and the propagation constant β  is defined as: 

LCωβ =         (4.6) 

Eq. (4.4) is a second-order “ordinary” differential equation, whose general solution is of the 

form: 

 )()()( zVzVzV −+ += zjzj eVeV ββ −−+ += , (4.7)

where 
+++ ≡ φjeVV , 

−−− ≡ φjeVV  are determined by the boundary conditions. By eq. (4.1), 

we can derive the space-time expression of eq. (4.7): 

{ } ( ){ }tjzjzjtj eeVeVezVtzv ωββω −−+ +=⋅= Re)(Re),( , 

( )++−= ++ φβω ztV cos ( )−− ++ φβω ztV cos , 

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎥

⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −−++ φ

βω
ωφ

βω
ω ztVztV coscos  

Compared with eq. (2.6), we find that )(zV + , )(zV −  of eq. (4.7) stand for the sinusoidal 

waves propagating in the +z and –z directions with a common phase velocity of: 

β
ω

=pv ,         (4.8) 

respectively. Substituting eq. (4.6) into eq. (4.8) gives 
LC

v p
1

= , consistent with eq. (2.5). 

 

<Comment> 

For a sinusoidal wave, each point (say the peak) moves a distance of one wavelength λ  

within a time duration of one period T ,  ⇒ 
T

vp
λ

= . By examining the voltage wave 

( )+++ +−= φβω ztVtzv cos),( : (1) ( )+++ +−= φβω ztVtzv 00 cos),( , ⇒ 
β
πλ 2

= . (2) 

( )+++ +−= φβω aa ztVtzv cos),( , ⇒ 
ω
π2

=T . We thus have 
β
ωλ

==
T

vp , consistent with 
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eq. (4.8). 

 

The z-dependent current phasor can be obtained by substituting eq. (4.7) into eq. (4.2): 

 )()()( zIzIzI −+ += [ ])()(1

0

zVzV
Z

−+ −= , (4.9)

where 0Z  is the characteristic impedance of the transmission line given in eq. (2.8). Similar 

to eq. (2.9), the characteristic impedance is the ratio of the voltage phasor )(zV +  to the 

current phasor )(zI +  of a “single” wave propagating in the +z direction: 

( )
( )

( )
( )zI
zV

zI
zVZ −

−

+

+

−==0        (4.10) 

 

 

■ Reflection at discontinuity 

Consider a lossless transmission line of characteristic impedance RZ ∈0 , propagation 

constant β , driven by a sinusoidal source of angular frequency ω , and terminated by an 

impedance CZL ∈ . 

 
Fig. 4-1. Terminated lossless transmission line driven by sinusoidal voltage source. 

Eq. (4.10) gives ( )
( ) 0Z
zI
zV

=+

+

, while the boundary condition requires ( )
( ) L

z

Z
zIzI
zVzV

=
+
+

=
−+

−+

0)(
)( . 

Therefore, a reflected wave )(zV −  must be generated if the load is not matched to the line 

( 0ZZL ≠ ). In general, the voltage reflection coefficient )(zΓ  and the line impedance )(zZ  

(looking toward the load at 0=z ) depend on the point of observation z: 
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zj
zj

zj

e
V
V

eV
eV

zV
zVz β

β

β
2

)(
)()( +

−

−+

−

+

−

==≡Γ , ⇒ 

zj
Lez β2)( Γ=Γ , +

−

=Γ=Γ
V
V

L )0(      (4.11) 

( )
( ) ( ) ( ) zjzj

zjzj

eZVeZV
eVeV

zIzI
zVzV

zI
zVzZ ββ

ββ

00)()(
)()()( −−+

−−+

−+

−+

−+
+

=
+
+

=≡ , ⇒ 

zjzj

zjzj

eVeV
eVeVZzZ ββ

ββ

−−+

−−+

−
+

= 0)( ,  −+

−+

−
+

==
VV
VVZZZL 0)0(    (4.12) 

Instead of using the voltage amplitudes +V  and −V , it is more convenient to express )(zΓ , 

)(zZ  by the characteristic and load impedances 0Z  and LZ . By eq’s (4.12), (4.11), 

L

L
L Z

VV
VVZZ

Γ−
Γ+

=
−
+

= −+

−+

1
1

00 , ⇒ 

ψi
L

L

L
L e

ZZ
ZZ

Γ≡
+
−

=Γ
0

0        (4.13) 

zj

L

L e
ZZ
ZZz β2

0

0)(
+
−

=Γ        (4.14) 

zjzj

zjzj

eVeV
eVeVZzZ ββ

ββ

−−+

−−+

−
+

= 0)( . By dividing +V  for the numerator and the denominator, ⇒ 

( ) ( )
( ) ( )zjzzjz

zjzzjzZ
ee
eeZzZ

L

L
zj

L
zj

zj
L

zj

ββββ
ββββ

ββ

ββ

sincossincos
sincossincos)( 00 +Γ−−

+Γ+−
=

Γ−
Γ+

= −

−

. By dividing zβcos  

for the numerator and the denominator, ⇒  

( ) ( )
( ) ( )

( ) ( )
( ) ( ) zj

zjZ
zjzj
zjzjZzZ

LL

LL

L

L

β
β

ββ
ββ

tan11
tan11

tan1tan1
tan1tan1)( 00 Γ+−Γ−

Γ−−Γ+
=

+Γ−−
+Γ+−

= . By eq. (4.13), ⇒ 

)tan(
)tan()(

0

0
0 zjZZ

zjZZZzZ
L

L

β
β

−
−

=       (4.15) 

Both )(zΓ  and )(zZ  are complex periodic functions of period 2λ . 

 

 

■ Short-circuited line 

Example 4-1: Consider a system shown in Fig. 4-1 where 0=LZ  (short-circuited load). 

Find the input impedance )( lZZsc −= , and the voltage and current distributions ),( tzv , 

),( tzi . 
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Fig. 4-2. (a) The z-dependent reactance of a short-circuited line. (b-c) The voltage ),( tzv  and current ),( tzi  
on the line at several time instants. (d) The Spatial distribution of the temporal oscillation amplitude of ),( tzv  
and ),( tzi , i.e., )(zV , )(zI , of Example 4-1. ωπ2=T , βπλ 2= , assume 0=+φ . 

Ans: (1) By eq. (4.15), )tan()( 0 zjZzZ β−= , ⇒ 

scsc jXljZZ == )tan(0 β        (4.16) 

Eq. (4.16) means that a lossless line ( RZ ∈0 ) with a short-circuited load is purely reactive, 

i.e., )(zZ  is purely imaginary. It can be capacitive ( 0<scX ) or inductive ( 0>scX ) of 

arbitrary magnitude, depending on the length of the line (Fig. 4-2a). 

(2) By eq’s (4.7), (4.11), ( )zj
L

zj eeVzV ββ Γ+= −+)( . By eq. (4.13), 1−=ΓL . ⇒ 

( )zjVzV βsin2)( +−= . By eq. (4.1), ⇒ 

( ) ( )++ +⋅= φωβ tzVtzv sinsin2),(       (4.17) 

This means that ),( tzv  oscillates with angular frequency ω at any position z, and the 

amplitude of temporal oscillation is described by the spatial distribution of the phasor 

magnitude )(zV  (Fig. 4-2d, solid): 

( )zVzV βsin2)( ⋅= +        (4.18) 

The peaks (maximum amplitude) and valleys (minimum amplitude) of the temporal 
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oscillation of ),( tzv  are fixed at =λz -0.25, -0.75, … and 0, -0.5, -1, …, respectively. As a 

result, ),( tzv  is a standing wave. 

(3) By eq’s (4.9), (4.11), ( ) ( )z
Z
Vee

Z
VzI zj

L
zj βββ cos2)(

00

+
−

+

=Γ−= . By eq. (4.1), ⇒ 

( ) ( )+
+

+⋅= φωβ tz
Z
V

tzi coscos
2

),(
0

      (4.19) 

Compare Fig. 4-2b and Fig. 4-2c, ),( tzi  is in space and time quadrature (i.e., 90º out of 

phase) with respect to ),( tzv . 

 

Example 4-2: Consider a short-circuited ( 0=LZ ) coaxial line with characteristic impedance 

=0Z 50 Ω, =pv 2.07×108 m/s. (1) Find the shortest possible length l if the line is designed to 

provide an inductance of 15 nH at the operation (non-angular) frequency =f 3 GHz. (2) 

What is the lumped element value of the line at =f 4 GHz? 

Ans: (1) Wavelength cm 9.6==
f

vpλ . By eq. (4.16), =⎟
⎠
⎞

⎜
⎝
⎛= ljZZsc λ

π2tan0  

,nH) 15()GHz 3(2
cm 9.6

2tan50 ⋅⋅==⎟
⎠
⎞

⎜
⎝
⎛ πωπ jLjlj sc  ⇒ =l 1.53 cm. 

(2) At =f 4 GHz, ==
f

vpλ 5.175 cm. =⎟
⎠
⎞

⎜
⎝
⎛= cm 53.1

cm .1755
2tan50 πjZsc -j167.4 Ω (<0, 

capacitive load). ==
sc

sc Cj
Z

ω
1

( ) scC
j

⋅⋅
−
GHz 42π

, ⇒ =scC 0.238 pF. 

 

 

■ Transmission line with resistive load 

Consider the system shown in Fig. 4-1 where the load is purely resistive ( RZL ∈ , RL ∈Γ ). 

Without loss of generality, we choose a proper time reference such that 0=+φ  (i.e., 

++ = VV ). By eq’s (4.7), (4.11),  

( ) ( )zj
L

zj
L

zj
L

zjzj
L

zj eeeeVeeVzV ββββββ Γ+Γ−Γ+=Γ+= −−−+−+)( , ⇒ 
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( ) ( )[ ]zjeVzV L
zj

L ββ sin21)( Γ+Γ+= −+      (4.20) 

Similarly, 

( ) ( )[ ]ze
Z
VzI L

zj
L ββ cos21)(

0

Γ−Γ+= −
+

     (4.21) 

The time-space expression of eq. (4.20) becomes: 

( ) { } ( ) { }tj
L

tjzj
L jezVeeVtzv ωωβ β Resin2Re1),( Γ+Γ+= +−+ , ⇒ 

( ) ( )ztVtzv L βω −Γ+= + cos1),( − ( ) ( )tzV L ωβ sinsin2 Γ+    (4.22) 

Similarly, 

( ) ( ) ( ) ( )tz
Z
V

zt
Z
V

tzi LL ωββω coscos2cos1),(
00

Γ−−Γ+=
++

   (4.23) 

The first term of eq. (4.23) represents a traveling wave, where the time and space variables 

are coupled in the form of zt βω − . The peaks of the traveling wave component (e.g. 

0=− zt βω ) move with phase velocity 
β
ω

=pv . The second term of eq. (4.23) represents a 

standing wave, where the time and space variables are decoupled. The peaks of the standing 

wave component (e.g. 2πβ −=z ) always occur at the same position. 

 

The oscillating amplitude of ),( tzv  is described by the phasor magnitude )(zV : 

( ) ( ) ( ) ( )zzVzV LL ββ 2222 sin1cos1)( Γ−+Γ+= +     (4.24) 

Eq. (4.24) is a periodic function of period 2λ , whose maximum and minimum values are: 

( )LVV Γ+= + 1max ,  ( )LVV Γ−= + 1min .     (4.25) 

The ratio of maxV  to minV , called the standing wave ratio (SWR), is a key parameter used in 

quantitatively describe the degree of impedance mismatch between the transmission line and 

the load: 
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L

L

V
VS

Γ−
Γ+

=≡
1
1

min

max         (4.26) 

A larger SWR corresponds to a stronger reflection and a higher weighting of standing wave 

component in eq. (4.22). 

 

Example 4-3: Find the line impedance )(zZ , voltage amplitude )(zV , and SWR if 

02ZZL = , 20Z  (∈R) in Fig. 4-1, respectively. 

 

Fig. 4-3. (a) The line impedance normalized to 0Z  for 02ZZL = . (b) The voltage amplitude )(zV  

normalized to +V  for 02ZZL = . (c-d) The counterparts of (a-b) for 20ZZL = . 

Ans: (1) If 02ZZL = : By eq. (4.15), 
)tan(21
)tan(2)( 0 zj

zjZzZ
β
β

−
−

= , which is a complex periodic 

function of period λ/2 (Fig. 4-3a). By eq. (4.13), 
3
1

0

0 =
+
−

=Γ
ZZ
ZZ

L

L
L . By eq. (4.24), 

( ) ( )zzVzV ββ 22 sincos4
3
2)( += + , ⇒ += VV

3
4

max , += VV
3
2

min , 2=S  (Fig. 4-3b). 

(2) If 20ZZL = : By eq. (4.15), 
)tan(2
)tan(21)( 0 zj

zjZzZ
β
β

−
−

=  (Fig. 4-3c). By eq. (4.13), 
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3
1

−=ΓL . By eq. (4.24), ( ) ( )zzVzV ββ 22 sin4cos
3
2)( += + , ⇒ += VV

3
4

max , 

+= VV
3
2

min , 2=S  (Fig. 4-3d). 

 

<Comment> 

1) Compare Fig. 4-3b and Fig. 4-3d, we found: (a) max)0( VzV == , 
4min
λ

=z , if 

)( RZL ∈ 0Z> ; min)0( VzV == , 0min =z , if )( RZL ∈ 0Z< . (b) 0rZZL =  and 
r

ZZL
0=  

produce the same SWR. 

2) Compare with Example 4-1, short-circuited load is a special case of resistive load where: 

(a) no traveling wave component exists [eq. (4.17) vs. eq. (4.22)], (b) 0min =V , ∞=S . 

 

 

■ Power flow on a transmission line 

The instantaneous power flowing into the line at position z is defined as: 

),(),(),( tzitzvtzp ⋅=        (4.27) 

Recall the case of short-circuited line where ),( tzv , ),( tzi  are given by eq’s (4.17), (4.19), 

)2sin()2sin(),(
0

2

+
+

+= φωβ tz
Z

V
tzp , 

which oscillates with angular frequency 2ω. However, the primary purpose of most 

steady-state transmission line applications is to maximize the carried power “averaged” over 

one sinusoidal period T : 

∫=
T

avg dttzp
T

zP ),(1)(        (4.28) 

Since 0)2sin(1
=+∫ +

T

dtt
T

φω , the pure standing wave on a short-circuited line does not 

carry (but store) time-average power. In time-harmonic cases, time-average power can be 

calculated from the voltage and current phasors more conveniently (prove it!): 
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{ })()( Re
2
1)( * zIzVzPavg ⋅=       (4.29) 

For arbitrary complex load ( LZ , CL ∈Γ ), substituting eq’s (4.7), (4.9), (4.11) into eq. (4.28), 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Γ−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅Γ+= −

+
−+ *

*

0

Re
2
1)( zj

L
zjzj

L
zj

avg ee
Z
VeeVzP ββββ  

( ) ( ){ }ψβ +Γ+Γ−=
+

zj
Z

V
LL sin21 Re

2
2

0

2

, ⇒ 

( )2

0

2

1
2

)( Lavg Z
V

zP Γ−=
+

       (4.30) 

 

<Comment> 

1) Eq. (4.30) is only valid for lossless lines ( RZ ∈0 ). In this case, the time-average power is 

independent of z, and the power delivered to the load is: )()0( zPPP avgavgL =≡ . 

2) The time-average power carried by the forward and backward traveling waves are: 

[ ]{ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅=

−+
−++++

*

0

*  Re
2
1)()( Re

2
1

Z
eVeVzIzVP

zj
zj

β
β  

0

2*

0 2
 Re

2
1

Z
V

Z
eVeV

zj
zj

+−+
−+ =

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

β
β , 

[ ]{ } +−−− Γ−=⋅= PzIzVP L
2* )()( Re

2
1 . 

Therefore, the total carried power is: 

( )2

0

2

1
2

)( Lavg Z
V

PPzP Γ−=+=
+

−+ , 

consistent with eq. (4.30). 

3) The load will receive a maximum power of 
0

2

2Z
V

PPL

+
+ ==  if the load is matched to the 

line: 0ZZL = , 0=ΓL . 
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Example 4-4: Consider a system shown in Fig. 4-1 where =0Z 50 Ω, =pv 2×108 m/s, =l  

17 m, =LZ 100−j60 Ω, =0V 100 V, ×= πω 2 125 MHz, =SZ 50 Ω. Find the time-average 

powers absorbed by the source impedance SP  and the load LP , and supplied by the source 

totP , respectively. 

 

Fig. 4-4. Equivalent circuit of Example 4-4. 

Ans: m 6.1
MHz 251

m/s 102 8

=
×

==
f

vpλ , ⇒ =⋅= m) 17(
m 6.1

2πβl 21.25π, 1
4

tantan ==
πβl . By 

eq. (4.15), the input impedance =
⋅−+
⋅+−

=−=
1)60100(50
150)60100(50)(

jj
jjlZZin (22.6− j25.1) Ω. The 

equivalent circuit is shown in Fig. 4-4. 

(1) By eq. (4.29), { } { }**
1  Re

2
1 Re

2
1

SSSSS IZIIVP ⋅=⋅= , ⇒ 

{ }sSS ZIP  Re
2
1 2=         (4.31) 

=
+

=
inS

S ZZ
VI 0 333.030.1

)1.256.22(50
100 je

j
=

−+
 A. ⇒ ( ) == )50(30.1

2
1 2

SP 42.3 W. 

(2) Similarly, { } { }**  Re
2
1 Re

2
1

SinSSSL IZIIVP ⋅=⋅= , ⇒ 

{ }inSL ZIP  Re
2
1 2=        (4.32) 

⇒ ( ) == )6.22(30.1
2
1 2

LP 19.2 W. 

(3) { } ( ){ } =+=⋅+=⋅= LSSSStot PPIVVIVP *
1

*
0  Re

2
1 Re

2
1 61.5 W. 
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<Comment> 

The power absorbed by the load can also be calculated by eq. (4.30), where we need to find 

+V  first. However, this more complicated procedure can give the spatial distribution of the 

voltage phasor )(zV . 

 


