Electromagnetics P4-1

Lesson 04 Steady-state Response of Transmission Lines

m Introduction

Though there are infinitely many types of excitation waveforms, it is of particular importance
to consider the response of transmission lines to sinusoidal excitations. The fundamental
reasons are twofold: (1) The electrical power and communication signals are often
transmitted as sinusoids or modified sinusoids. (2) Any non-sinusoidal signals can be treated
as superposition of sinusoids of different frequencies (Fourier analysis). The initial onset of a
sinusoidal excitation produces a natural (transient) response, which will decay rapidly in time
(Example 3-2). In contrast, the forced (steady-state) response supported by the sinusoidal
source will continue indefinitely. In this lesson, we will employ two powerful tools, i.e.,
phasors and complex impedances (commonly used in alternating-circuit lumped circuit

analysis) to show the rich phenomena of waves.

m Phasor representations of transmission line equations and solutions
When the steady-state due to a sinusoidal excitation is reached, the voltage v(z,t) and the
current i(z,t) on the transmission line must also be sinusoidal waves, which can be

represented by the z-dependent phasors V(z), 1(z):

v(z,t) =Re{ (2)-e'*}, i(z,t) =Re{l (z) -} (4.1)
The lossless transmission line equations, i.e., eq’s (2.1-4), can be rewritten as:
iV(z) =—jolL-1(2) (4.2)
dz
d .
—1(z) =—joC -V (2) (4.3)
dz
d? 2
V@ =-AVQ) (4.4)
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d S@=-A10) (4.5)

n

where is replaced by (jw)", and the propagation constant £ is defined as:

B=aw\LC (4.6)

Eq. (4.4) is a second-order “ordinary” differential equation, whose general solution is of the
form:
V(2) =V (2)+V (2) =V'e ¥ v el (4.7

where V* =

el V= r\/"e""’f are determined by the boundary conditions. By eq. (4.1),

we can derive the space-time expression of eq. (4.7):

v(z,) =Rel/ (2) e }=Reflv e 1% v e

(a)t—ﬂz+¢+)+ ’\/“cos(a)t+ﬂz+¢‘),

e ey

Compared with eq. (2.6), we find that V" (z), V (z) of eq. (4.7) stand for the sinusoidal

waves propagating in the +z and —z directions with a common phase velocity of:

V,o=—, (4.8)

respectively. Substituting eq. (4.6) into eq. (4.8) gives v, = consistent with eq. (2.5).

1
JLe'

<Comment>

For a sinusoidal wave, each point (say the peak) moves a distance of one wavelength A

within a time duration of one period T, = v, =i. By examining the voltage wave

+):

+), = T=2"_ We thus have vV, =
@

27
), A=—. (2
pr+¢’), = 5@

, consistent with

a’

—||;)
mla
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eq. (4.8).

The z-dependent current phasor can be obtained by substituting eq. (4.7) into eq. (4.2):

1(2)=1"(2)+17(2) =Ziﬁ/+(z)—v-(z)], (4.9)

where Z, is the characteristic impedance of the transmission line given in eq. (2.8). Similar
to eq. (2.9), the characteristic impedance is the ratio of the voltage phasor V*(z) to the

current phasor 17(z) of a “single” wave propagating in the +z direction:

ZO:V+(z):_V‘(z) (4.10)

I"(z)  17()

m Reflection at discontinuity
Consider a lossless transmission line of characteristic impedance Z, R, propagation
constant /3, driven by a sinusoidal source of angular frequency @, and terminated by an

impedance Z, €C.

+ 0

\I‘w
&N

ol
]
] l

= 2.1 =0

Fig. 4-1. Terminated lossless transmission line driven by sinusoidal voltage source.

V*(z)+V (2)

Eq. (4.10) gives V—(Z) =Z,, while the boundary condition requires - =7, .
| 1"(2)+17(2) |,

Therefore, a reflected wave V™ (z) must be generated if the load is not matched to the line

(Z, #Z,). In general, the voltage reflection coefficient I'(z) and the line impedance Z(z)

(looking toward the load at z = 0) depend on the point of observation z:
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Vi(z) _Vve? v

— i2pe
1H(Z)_v*(z) Ve oy T
r(z)=T, e, T, =T(0) =x (4.11)
V() VI(@+V (2) _ Ve iy el
T IR B e N VA0 S VA2 Y
2@)=z, L E AV o sy=z, LY (4.12)

(VA VAV V-V~

Instead of using the voltage amplitudes V* and V, it is more convenient to express I'(z),
Z(z) by the characteristic and load impedances Z, and Z, .Byeq’s (4.12), (4.11),
_7 Vi+V™ 7 1+T7

Z - - ’
SR VAR VRN B o
R (4.13)
Z +7Z,
I'(z)= %e‘m (4.14)
L 0

ta- it \J il
v ei_ +er. . By dividing V" for the numerator and the denominator, =
Ve v el

e 4T e (cos iz — jsin Bz)+ T, (cos Sz + jsin fz)
) =2, 7w = Lo o o :

e _Te (cos Bz — jsin Bz)—T (cos fz + jsin pz)
for the numerator and the denominator, =
2(2)=2, (1- J_tanﬁz)+FL(1+ J_tanﬁz) _z. @+1r,)- J_(l—FL)tanﬁz Byeq. (4.13), =

(1-jtanpz)-T, (@+ jtanpz) °(1-T,)- j{@+I )tan Bz

2(2) = 7, 2o~ 1o tan(/2) (4.15)
Z,— JZ, tan(pz)

Both I'(z) and Z(z) are complex periodic functions of period /2.

Z(z) =12,

By dividing cos sz

m Short-circuited line
Example 4-1: Consider a system shown in Fig. 4-1 where Z =0 (short-circuited load).

Find the input impedance Z =Z(-I), and the voltage and current distributions v(z,t),

i(2,1).
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Fig. 4-2. (a) The z-dependent reactance of a short-circuited line. (b-c) The voltage V(z,t) and current i(z,1)
on the line at several time instants. (d) The Spatial distribution of the temporal oscillation amplitude of V(z,t)
and i(z,t),ie, NV (2), [I(2)|, of Example4-1. T =27/, A =27/p assume ¢* =0.

Ans: (1) By eq. (4.15), Z(z)=-jZ,tan(fz) , =

Z,.=jZ,tan(Al) = jX (4.16)
Eqg. (4.16) means that a lossless line (Z, € R) with a short-circuited load is purely reactive,
I.e., Z(z) is purely imaginary. It can be capacitive (X, <0) or inductive (X, >0) of
arbitrary magnitude, depending on the length of the line (Fig. 4-2a).
@) By eg’s (47), (411), V(z2)=V'[e " +Ie”). By eq (413), I =-1. =
V(z) =-2jV*sin(fz). By eq. (4.1), =

v(z,1) :2’\/+ sin(ﬂz)-sin(a)t+¢+) (4.17)

This means that v(z,t) oscillates with angular frequency @ at any position z, and the

amplitude of temporal oscillation is described by the spatial distribution of the phasor

magnitude |V (z)| (Fig. 4-2d, solid):

V()| =2V

The peaks (maximum amplitude) and valleys (minimum amplitude) of the temporal

-[sin(Bz) (4.18)
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oscillation of v(z,t) are fixed at z/4 =-0.25,-0.75, ... and 0, -0.5, -1, ..., respectively. As a

result, v(z,t) isastanding wave.

(3) By eq’s (4.9), (4.11), 1(z) = \; (e -re")= 2;/—+cos(ﬁz). By eq. (4.1), =
i(z,t) = 22/—+cos(ﬁz)-cos(a)t+¢*) (4.19)

0
Compare Fig. 4-2b and Fig. 4-2c, i(z,t) is in space and time quadrature (i.e., 90° out of

phase) with respect to v(z,t).

Example 4-2: Consider a short-circuited (Z, =0) coaxial line with characteristic impedance

Z,=50Q, v, =2.07x10° m/s. (1) Find the shortest possible length I if the line is designed to

provide an inductance of 15 nH at the operation (non-angular) frequency f =3 GHz. (2)

What is the lumped element value of the lineat f =4 GHz?

v
Ans: (1) Wavelength A:Tp:6.9cm . By eqg. (4.16), ZSC:jZOtan(ZTﬂIj:

j50tan(6 SZm Ij = joL, = j27-(3GHz)-(15nH), = 1=1.53 cm.

Vv
t f= z, A=-"=5, cm. = j50tan| ————1.53cm |=-j167. <0,
(2) At f=4 GHz, 2=-F=51T5 Z. = j50 Zﬂcml 53 j167.4 Q (<0

5.175
1 — ]
joC, 27-(4GHz)-C_

capacitive load). Z_ = ,=> C, =0.238 pF.

m Transmission line with resistive load
Consider the system shown in Fig. 4-1 where the load is purely resistive (Z, e R, I €R).

Without loss of generality, we choose a proper time reference such that ¢* =0 (i.e.,

VY :rv+

). By eq’s (4.7), (4.11),

V(2) :V*(e"'ﬁ‘Z +1“Le"'”Z):V*(e"")’Z +T e T +FLe‘ﬁz), =
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V(2)=V*[@+T, e + 2jr, sin()] (4.20)
Similarly,
1(z) = \g [a+1, e —2r, cos(z)] (4.21)

The time-space expression of eq. (4.20) becomes:

v(z,t) =V |1+ I, )Refe e+ 2V, sin(fz)Re{je’ }, =
v(z,t) = N 1+ T, )cos(wt — pz)- 2’\/+ T, sin(Bz)sin(wt) (4.22)
Similarly,
i(z,t) = r\;—+(l+ I, )cos(wt — fz) - 2’\;—+FL cos(/z)cos(wt) (4.23)

The first term of eq. (4.23) represents a traveling wave, where the time and space variables

are coupled in the form of wt— fz. The peaks of the traveling wave component (e.g.

ot — fz =0) move with phase velocity v, :%. The second term of eq. (4.23) represents a

standing wave, where the time and space variables are decoupled. The peaks of the standing

wave component (e.g. Sz =—/2) always occur at the same position.

The oscillating amplitude of v(z,t) is described by the phasor magnitude [\/ (z)|:

V@)=V

Eq. (4.24) is a periodic function of period /2, whose maximum and minimum values are:

Vmax :N+(1+|FL|)1 Vmin :err

The ratio of V,,, to V,,, , called the standing wave ratio (SWR), is a key parameter used in

J@+ T cos?(Bz)+ (1-T, F sin?(2) (4.24)

@-r)). (4.25)

min ?
quantitatively describe the degree of impedance mismatch between the transmission line and

the load:
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§ = mx _—TLL (4.26)

A larger SWR corresponds to a stronger reflection and a higher weighting of standing wave

component in eq. (4.22).

Example 4-3: Find the line impedance Z(z), voltage amplitude [\/(z)|, and SWR if
Z, =2Z,, Z,/2 (eR)inFig. 4-1, respectively.

i (b)
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Fig. 4-3. (a) The line impedance normalized to Z, for Z, =2Z,. (b) The voltage amplitude [\/(Z)|

normalized to N* for Z, =2Z,. (c-d) The counterparts of (a-b) for Z, = ZO/Z .

2— jtan(pz)
’1- j2tan(Bz)’

function of period A/2 (Fig. 4-3a). By eq. (4.13), FL:ZL_ZO :1. By eq. (4.24),

Z, +Z, 3
V@)= 2
3

20,4
, Vmin =§’V
=7,/2: _z 1-j2wen(B) oy
(@ If Z,=2,/2: By eq. (4.15), Z(z)=2, 2~ jan(f) (Fig. 4-3c). By eq. (4.13),

Ans: (1) If Z, =2Z,: By eq. (4.15), Z(z)=Z which is a complex periodic

. S=2 (Fig. 4-3b).

Jacos?(Bz)+sin?(pz), = V,,, =§N+
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FL:—%. By eq. (4.24), [\/(z)|=§r\/+\/cosz(ﬁz)+4sin2(ﬂz), =S Vmax=% |,
21, .
vmngyv , S=2 (Fig. 4-3d).
<Comment>
1) Compare Fig. 4-3b and Fig. 4-3d, we found: (a) VM (z=0)|=V,, . zmin=%, if
Z

Z,(eR)>2Z,; [\/(z=0)|=vmm, 2. =0,if Z (eR)<Z,. (b) Z_=rZ, and ZL=T°

produce the same SWR.
2) Compare with Example 4-1, short-circuited load is a special case of resistive load where:

(a) no traveling wave component exists [eq. (4.17) vs. eq. (4.22)], (b) V., =0, S=o0.

m Power flow on a transmission line
The instantaneous power flowing into the line at position z is defined as:

p(z,t) =v(z,t)-i(z,1) (4.27)
Recall the case of short-circuited line where v(z,t), i(z,t) are given by eq’s (4.17), (4.19),

2

p(z,t) Jvz—sin(z,b’z)sin(Za)t +¢7),

which oscillates with angular frequency 2. However, the primary purpose of most
steady-state transmission line applications is to maximize the carried power “averaged” over

one sinusoidal period T :
1
Pag ()= [ p(z.tydt (4.28)
T
Since lesin(Za)t+¢*)dt =0, the pure standing wave on a short-circuited line does not
T

carry (but store) time-average power. In time-harmonic cases, time-average power can be

calculated from the voltage and current phasors more conveniently (prove it!):
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P (2) ——Re{V(z) 1"(2)} (4.29)
For arbitrary complex load (Z, ,I', € C), substituting eq’s (4.7), (4.9), (4.11) into eq. (4.28),

avg (Z) = _Re{v+(ejﬁz + FLej/ﬁ)-(\;;J (e*jﬁz _FLeJﬁ‘Z )*}

0

VT
"7,

0

Re{[1-|r\ | )+ 2j|r, sin(4z +)}, =

2

P, (2) = M b, f) (4.30)

0

<Comment>

1) Eq. (4.30) is only valid for lossless lines (Z, € R). In this case, the time-average power is

independent of z, and the power delivered to the load is: P_=P,,(0) =P, (z).

avg

2) The time-average power carried by the forward and backward traveling waves are:

- :%Re{v (2)- [| (z)] }_—Re{v+ —Jﬂz[V+Zjﬂzj }

2

_ ta-im ) *
~LlRelviem| Y E JV
2 Z, 27,

P :%Re{V(z)-[l @] =[P

Therefore, the total carried power is:

(z)=P"+P =

Z(1|r|)

avg

consistent with eq. (4.30).

2

3) The load will receive a maximum power of P =P" = N_
0

if the load is matched to the

line: Z, =2,, I =0.
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Example 4-4: Consider a system shown in Fig. 4-1 where Z, =50 Q, v, =2x108 m/s, | =

17 m, Z, =100-j60 Q, V, =100V, o =27x125 MHz, Z, =50 Q. Find the time-average

powers absorbed by the source impedance P, and the load P_, and supplied by the source

P, » respectively.

Fig. 4-4. Equivalent circuit of Example 4-4.

V 8
Ans: 1=-"% 2x10 rn/S—l.Gm, = ﬂ|:2_”.
1.6m

f  125MHz
(100— j60) + j50-1
50+ j(100— j60)-1

(17m)=21.257% tanﬁl:tan%:l. By

eq. (4.15), the input impedance Z,, =Z(-l) =50

= (22.6- j25.1) Q. The

equivalent circuit is shown in Fig. 4-4.

(1) By eq. (4.29), P :%Re{vl- I;}:%Re{ 1,Z, 15}, =
P, =%||S|2 Re{Z.} (4.31)
= Vo _ 100 =1.30e/% A = PS=1(1.30)2(50)=42.3W.
Z +Z,  50+(22.6— j25.1) 2
(2) Similarly, PL:%Re{vs-|;f}=%Re{|szin 15}, =
P = %||S|2 Re{Z, ! (4.32)

= P = %(1.30)2(22.6) =19.2 W.

) Ra Z%Re{vo ' IQ}Z%RG{(VlJFVs)' |;}= Py +P =615W.
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<Comment>

The power absorbed by the load can also be calculated by eq. (4.30), where we need to find

V™ first. However, this more complicated procedure can give the spatial distribution of the

voltage phasor V(z).
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