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Lesson 02 Transmission Lines Fundamentals 

 

2.1 Introduction 

■ Why discussing transmission lines? 

The rapid development of electronic technology in the 20th century lies on the employment 

of simple but powerful tool called (lumped) circuit theory to accurately predict the 

performance of sophisticated electrical circuits. Circuit theory considers the effects of 

lumped elements (R, C, L, dependent sources) connected in series and/or shunt, while the 

conducting wires play no role (space-independent v, i). In fact, elements and wires provide a 

framework over which electric charges move, setting up electric and magnetic (vector) fields 

and determining the circuit behaviors. A full vector analysis based on Maxwell’s equations is 

most complete. The theory of distributed circuits (transmission lines) bridges circuit theory 

and Maxwell’s equations. On the one hand, it can describe some wave properties (wavelength, 

phase velocity, reflection, …) that are absent in circuit theory but critical in power 

transmission and current integrated circuits. On the other hand, it deals with scalar quantities 

(v, i) as in circuit theory (but with one extra spatial variable z), free of complicated vector 

analysis. 

 

 

■ Criteria to consider distributed circuits 

The central difference between lumped and distributed circuit theories is the latter considers 

time delay dt  when signal (v, i) travels from one point to another. As will be justified, the 

signal travels with velocity ncv = , where c is the light velocity in vacuum, n is the 

refractive index of the medium where EM fields exist. Distributed circuit theory matters 

when dt  is comparable or longer than the “signal time scale”. 
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Example 2-1: The Taipower distributes electric power via 60-Hz sinusoidal waves traveling 

in air (oscillating period 601=T  sec, cv = ). The source and load signals, i.e., )(tV AA ′ = 

( )tV ⋅⋅602cos0 π  and =′ )(tV BB [ ])(602cos0 dttV −⋅⋅π , have a “non-negligible” time delay 

=dt vl  (thus lumped circuits model is inadequate) if >dt 0.01T (rule of thumb), ⇒ >l 50 

km. As a result, the operation of the island-wide power system relies on distributed circuit 

analysis. 

 
Fig. 2-1. (a) Schematic of the power line. (b) Definitions of oscillating period and delay. 

 

Example 2-2: In digital electronic circuits, rise time rt  is defined as the duration when the 

signal changes from 10% to 90% of its final value (Fig. 2-2a). For 1-cm on-chip SiO2 

interconnection, cv 5.0≈ , ≈= vltd 67 ps (1 ps=10-12 sec). The source and load signals 

have a “non-negligible” time delay if ≈< dr tt 5.2 165 ps (rule of thumb). Rise time of 

CMOS transistors can be as fast as 100 ps, where distributed circuit theory is required. 

Fig. 2-2. Definitions of (a) rise time, and (b) one-way time delay. 

 

 



Electromagnetics                    P2-3 

Edited by: Shang-Da Yang 

■ Things you have to know in advance 

1) Models of linear circuit elements: (a) iRv ⋅= , (b) v
dt
dCi ⋅= , (c) i

dt
dLv ⋅= . These 

vi −  relations will be justified in Lesson 10, 9, 13, respectively. 

 
Fig. 2-3. Schematic diagrams of (a) capacitor, and (b) inductor. 

2) Kirchhoff’s laws: (a) 0=∑
k

ki , (b) 0=∑
k

kv . 

3) Phasor representation of time-harmonic (i.e., sinusoidal) functions: ( )φω += tVtv cos)( 0  

{ }tjeV ω⋅= Re , where phasor == φjeVV 0 ( )φφ sincos0 jV + .  =)(tv
dt
d

⎭
⎬
⎫

⎩
⎨
⎧ ⋅ tje

dt
dV ωRe = 

{ }tjeVj ωω ⋅Re , ⇒ phasor of )(tv
dt
d  becomes Vjω . ⇒ Time derivatives of sinusoidal 

functions are replaced by algebraic multiplications: n

n

dt
d

→ nj )( ω . 

 

 

2.2 Equivalent Circuit and Equations of Transmission Lines 

■ Geometry of transmission lines 

Fig. 2-4. Typical types of transmission lines. 
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Typical transmission lines consist of two long conductors separated by some insulating 

material (Fig. 2-4). At any transverse plane 0zz = : (1) a voltage drop ),( 0 tzv  between the 

two conductors exists, (2) currents ),( 0 tzi±  with equal magnitude but opposite directions 

flow along the two conductors, when the two electrodes of a (voltage or current) source are 

connected to the transmission line. 

 
 

■ Equivalent circuit 

Since the voltage and current of a transmission line vary with position z (and time t ), we 

have to characterize it by a “distributed” circuit model. Consider an infinitesimal line of 

length Δz, the currents set up magnetic field between the conductors (by Ampere’s law), 

causing magnetic flux. When currents are time-varying, so is the magnetic flux, and a voltage 

variation “along” the conductor (electromotive force) is induced (by Faraday’s law) in an 

attempt to drive the currents oppositely (by Lenz’s law). This behavior can be modeled by a 

series inductor ⎟
⎠
⎞

⎜
⎝
⎛ ⋅= i

dt
dLv . Meanwhile, two separated conductors form a capacitor. Since 

the upper and lower conductors of adjacent infinitesimal lines are connected respectively, the 

capacitive behavior of an infinitesimal line can be modeled by a shunt capacitor. In the 

presence of imperfect conducting and imperfect insulating materials, voltage drop along the 

conducting line and leakage current between them exist, which can be modeled by a series 

resistor and a shunt conductor, respectively. 

 
Fig. 2-5. Equivalent circuit of a real transmission line. 
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The equivalent circuit of a real transmission line is shown in Fig. 2-5, where R, L, G, C 

represent resistance, inductance, conductance, and capacitance per unit length. Transmission 

line is lossless in the absence of R and G. 

 

<Comment> 

1) By using the equivalent circuit, analysis of electric and magnetic vector fields is 

substituted by that of scalar voltage between and current along the line, greatly 

simplifying the math. 

2) Values of R, L, G, C depend on geometry and material characteristics of transmission line. 

We will discuss how to calculate them in the subsequent lessons. 

 

 

■ Lossless transmission line equations 

Assuming 0=R , 0=G  (lossless line) in Fig. 2-5: 

1) Applying Kirchhoff’s voltage law: ),()(),(),( tzi
t

zLtzvtzzv
∂
∂

Δ−=Δ+ . By taking 

0→Δz , we arrive at a first-order PDE of two unknown functions ),( tzv  and ),( tzi : 

),(),( tzi
t

Ltzv
z ∂

∂
−=

∂
∂        (2.1) 

2) Applying Kirchhoff’s current law: ),()(),(),( tzzv
t

zCtzzitzi Δ+
∂
∂

Δ+Δ+= . By taking 

0→Δz  and omitting higher-order terms of ),( tzzv Δ+  [i.e., ),(),( tzvtzzv ≈Δ+ ], we 

arrive at another first-order PDE: 

),(),( tzv
t

Ctzi
z ∂

∂
−=

∂
∂        (2.2) 

By taking 
z∂
∂  for both sides of eq. (2.1), and substituting eq. (2.2), we obtain a second-order 

PDE of single unknown function ),( tzv : 
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),(),( 2

2

2

2

tzv
t

LCtzv
z ∂

∂
=

∂
∂       (2.3) 

Similarly, ),( tzi  is governed by the same PDE: 

),(),( 2

2

2

2

tzi
t

LCtzi
z ∂

∂
=

∂
∂       (2.4) 

 

 

■ Solutions for infinite lossless lines 

Exact solution of ),( tzv  in eq. (2.3) requires boundary and initial conditions [e.g. 

)(),0( 1 tVtv = , )()0,( 2 zVzv = ]. However, any function )(⋅f  of variable 
pv
zt −=τ  is a 

solution to eq. (2.3), as long as 

LC
v p

1
≡ .        (2.5) 

To verify this fact, let )(),( τftzv = , ⇒ 

τ
τ

τ d
df

vzd
df

z
v

p

1
−=

∂
∂
⋅=

∂
∂ , and 

pvzt
ppp

f
v

f
vd

df
zvz

v
−=

′′=
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=
∂
∂

τ
τ

ττ
)(111

22

2

22

2

. 

τ
τ

τ d
df

td
df

t
v

=
∂
∂
⋅=

∂
∂ , and 

pvzt
f

d
fd

d
df

tt
v

−=
′′==⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

=
∂
∂

τ
τ

ττ
)(2

2

2

2

. 

⇒ 2

2

222

2 1)(
t
v

vv
f

z
v

pp ∂
∂

=
′′

=
∂
∂ τ , consistent with eq. (2.3) regardless of the functional form )(⋅f . 

In fact, ( )pvztf −  represents a distortion-free wave traveling in the +z direction with phase 

velocity pv . Fig. 2-6 shows an example when )(τf
⎩
⎨
⎧ <<−

=
otherwise ,0

01- if , ττ
, and =pv 1 m/s. At 

0=t , ( ) )( zfvztf p −=−
⎩
⎨
⎧ <<

=
otherwise ,0

10 if , zz
. At 5.0=t sec, ( ) ( )zfvztf p −=− 5.0  

⎩
⎨
⎧ <<−

=
otherwise ,0

1.50.5 if ,5.0 zz
, i.e. the waveform is displaced by +0.5 m within 0.5 sec (speed 

equals =pv 1 m/s) without changing its shape. The wave propagation property continues for 
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any 0tt =  sec, where ( ) =− pvztf ( )ztf −0
⎩
⎨
⎧ +<<−

=
otherwise ,0

1 if , 000 tzttz
. 

 
Fig. 2-6. Example of solution to transmission line equation. 

In addition to ( )pvztf − , we can find that any function )(⋅f  of variable 
pv
zt +=′τ  is also 

a solution to eq. (2.3), representing a distortion-free wave traveling in the −z direction with 

the same phase velocity pv  (check by yourself). So the general (D’Alembart’s) solution to 

eq. (2.3) is a superposition of two counter-propagating waves: 

( ) ( )pp vztfvztftzv ++−= −+),(       (2.6) 

where the superscripts “+”, “−” denote the directions of propagation, and ( )⋅+f , ( )⋅−f  can 

be completely different functions (determined by external excitation, i.e. initial conditions). 

 

<Comment> 

1) Phase velocity 
LC

v p
1

=  of most transmission lines depends only on properties of 

insulating media, though parameters L, C are associated with the geometry of the line. 

2) Eq. (2.6) exhibits properties of “wave”, a result when the space and time variations of a 

physical quantity [ ),( tzv  in our case] are “coupled” through second-order derivatives. 

 

Once ),( tzv  is known [eq. (2.6)], ),( tzi  can be uniquely determined by the following steps: 

(i) Substitute eq. (2.6) into eq. (2.1): ( ) ( )
t
iL

d
df

vd
df

vz
v

pp ∂
∂

−=+−=
∂
∂ −+

τ
τ

τ
τ 11 . 
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(ii) Integrate with respect to t : ( ) ( ) t
d

df
d

df
Lv

t
z
v

L
tzi

p

∂⎥
⎦

⎤
⎢
⎣

⎡
−=∂

∂
∂

−= ∫∫
−+

τ
τ

τ
τ11),( . Since 

1=
∂
∂

t
τ , ⇒ ( ) ( ) τ

τ
τ

τ
τ d

d
df

d
df

L
Ctzi ∫ ⎥

⎦

⎤
⎢
⎣

⎡
−=

−+

),( , 

( ) ( )[ ]pp vztfvztf
Z

tzi +−−= −+

0

1),( ,     (2.7) 

where 

C
LZ =0  (Ω)        (2.8) 

is known as the characterization impedance of the transmission line (not the resistance of 

conductors or insulator). If we denote the voltage component propagating in +z and -z 

directions as ( ) ( )pvztftzv −= ++ ,  and ( ) ( )pvztftzv += −− , , ⇒ 

( ) =+ tzi ,  ( )pvztf
Z

−+

0

1 ,  ( ) ( )pvztf
Z

tzi +−= −−

0

1, , 

( )
( )

( )
( )tzi

tzv
tzi
tzvZ

,
,

,
,

0 −

−

+

+

−==        (2.9) 

The characteristic impedance is the ratio of voltage to current for a “single” wave propagating 

in the +z direction. However, ( )
( )tzi

tzv
,
,

≠constant if two counter-propagating waves coexist. 

 

Example 2-3: Consider an infinitely long lossless transmission line of characteristic 

impedance 0Z  (∈R) and phase velocity pv  connected to a step voltage source of amplitude 

0V  and internal resistance sR . Find the voltage, current, and power propagating down the 

line. 
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Fig. 2-7. Infinitely long lossless transmission line driven by step voltage source. 

Ans: Assume the line is initially at rest: 0)0,( == −tzv , 0)0,( == −tzi . At 0=t , the 

source voltage changes from 0 to 0V . In the absence of reflected wave (infinitely long line), 

the line acts as a load of impedance Z0 for the source. The initial voltage established at the 

source ends is: == + )0(tvs 0
0

0 V
RZ

ZV
s

s +
= . The voltage signal of constant amplitude sV  

propagates in the +z direction with velocity pv , ⇒ 
⎩
⎨
⎧ >><

=+

otherwise ,0

0 ,0 , if ,
),(

tzvtzV
tzv ps . By 

eq. (2.9), ( )
0

,),(
Z

tzvtzi
+

+ =
⎩
⎨
⎧ >><

=
otherwise ,0

0 ,0 , if , tzvtzI ps , where 
0Z

VI s
s = . The total power 

supplied by the source: 0VIP stot = , while only a fraction of it is supplied to (stored in) the 

line: ssline VIP =+ . 


