Lesson 01 Introduction

1.1 Basics

■ What is electromagnetics (EM)?

The study of electric charges at rest and in motion.

Overview of EM

Electric charges establish electric fields.

Moving charges form electric currents and magnetic fields.

Time-varying charges and currents cause the electric and magnetic fields are coupled in a way that they behave like "waves".

■ Analysis of EM problems

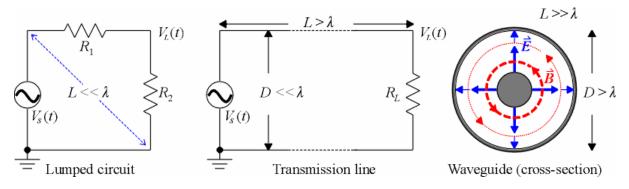


Fig. 1-1. Schematic diagram of different types of EM problems.

Conditions	Theory	Unknowns	Math tool	Description
$L << \lambda$	Lumped circuits	V(t),	Ordinary	All points react to
	Kirchhoff's laws	I(t)	differential	the source instantly
			equations (ODEs)	
$L>\lambda, D<<\lambda$	Transmission lines	V(z,t),	Partial differential	Delay along the
	Kirchhoff's laws	I(z,t)	equations (PDEs)	longitudinal (z)
				direction exists
$L >> \lambda, D > \lambda$	Waveguides	$\vec{E}(x, y, z, t),$	Full vectorial	Delay along the
	Maxwell's equations	$\vec{H}(x, y, z, t)$	PDEs	longitudinal (z),
				and transversal
				(<i>x</i> , <i>y</i>) directions
				exist

Tab. 1-1. Comparison among EM problems.

<u>Example 1-1</u>: A quarter-wave monopole antenna (Fig. 1-2) is regarded as an "open circuit" and cannot carry electric current according to the lumped circuit theory. However, the EM theory permits it carrying spatially nonuniform currents (DKC, Ch 11).

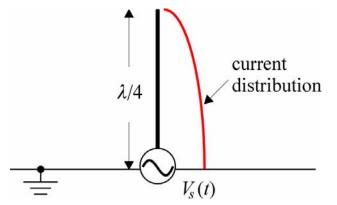


Fig. 1-2. A quarter-wave monopole antenna driven by a time-varying source may carry spatially nonuniform current.

1.2 Electromagnetic Model

Methodology

1) Inductive approach: starting with observations of experiments, inferring laws and theorems (from particular phenomena to general principles).

Electromagnetics

2) Deductive approach: starting with fundamental postulates, deriving particular laws and theorems, which can be verified by experiments.

We will take deductive approach to establish EM theory:

- Defining the basic quantities: (i) Electric charge q (e=1.6×10⁻¹⁹ C), volume charge density p = dq/dv (C/m³). (ii) Current I = dq/dt (C/s, or A), volume current density J (A/m²). (iii) Electric field intensity E (V/m): electric force on a unit charge. (iv) Electric flux density D (C/m²): useful in studying electric field in materials. (v) Magnetic flux density B (T): magnetic force on a charge moving with a given velocity. (vi) Magnetic field intensity H (A/m): useful in studying magnetic field in materials. Understand the meaning of physical quantities from their corresponding units.
- 2) Rules of operations: (i) Vector analysis (Lesson 5). (ii) Partial differential equations.
- 3) Fundamental postulates: Maxwell equations and conservation of electric charges relate the source and field quantities. The solutions describe all the EM phenomena.