
Homework Problem Set #13

(Due date: 2011/06/08)

The full score is 50 points.

- 1) (10%) Consider a copper strip of length *L* on the *xy*-plane, where a uniform magnetic flux density $\vec{B} = \vec{a}_z B_0$ exists. One of its end is pivoted at the origin, while the entire strip is rotating counterclockwisely about the *z*-axis with an angular velocity ω . What is the voltage difference between the two ends (from the pivot to the tip) of the strip?
- (5%) Consider a time-harmonic EM wave in some material with ε = ε₀, σ = 5.70×10⁷
 (S/m). What is the ratio of magnitude of the conduction current density to the displacement current density at 1 GHz frequency?
- 3) Nonhomogeneous wave equations of fields in the frequency domain.
- 3a) (5%) Starting from the Maxwell's equations in the time domain, i.e. eq's (14.1), (7.8) (14.12), (11.2) in the lecture notes, write down the (phasor) Maxwell's equations of \vec{E} and \vec{H} in the frequency domain in a simple medium with charge and current sources.
- 3b) (10%) By the result of problem 3a, derive the nonhomogeneous (phasor) wave equations of \vec{E} and \vec{H} , respectively.
- 4) Consider a short conducting wire of length dl carrying a spatially uniform current

 $i(t) = I_0 \cos \omega t$ and placed along the z-axis at the origin (Fig. 1).

Fig. 1 A small current source creates EM fields.

- 4a) (5%) By eq. (15.28) in the lecture notes, find the phasor representation of resulting vector potential $\vec{A}(\vec{r})$ in spherical coordinates ($\vec{r} = \vec{a}_R R$, $R >> \lambda = 2\pi c/\omega$).
- 4b) (5%) By the result of Problem 4a, find the "approximated" phasor representation of magnetic field intensity $\vec{H}(\vec{r})$ by neglecting the "higher order terms". [E.g. $(kR)^{-1} + (kR)^{-2} \approx (kR)^{-1}$.]
- 4c) (5%) By the result of Problem 4b, find the "approximated" phasor representation of electric field intensity $\vec{E}(\vec{r})$ by neglecting the "higher order terms".
- 4d) (5%) Plot the EM power distribution $|\vec{E}(R_0, \theta, \phi_0)|^2$ relative to its maximum in spherical coordinates, where R_0 , ϕ_0 are arbitrary constants.