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Homework Solutions #7  

(Due date: 2011/04/25) 

 

This problem set covers materials of Lesson 9. The full score is 40 points. 

 

1) (15%) Fig. 1 shows a simplified model of pn-junction. A depletion region is formed 

during np dxd <<− , where net charge densities AeN−  (C/m3) and DeN  (C/m3) 

exist for 0<<− xd p  and ndx <<0 , respectively. Note that nDpA dNdN =  holds 

to maintain the electric neutrality. Let the potential 0)( =− pdV , find the potential 

distribution )(xV  for np dxd <<−  by solving Poisson’s equation (with suitable 

boundary conditions). 

 
Fig. 1. pn-junction. 

Answer: 

We discuss the potential distribution during (i) 0<<− xd p and (ii) ndx <<0  

separately, due to the discontinuous charge distribution at the interface. 

(i) 0<<− xd p : 

According to the Poisson’s equation, we have: 
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Another BC is that the potential is constant (E-field is zero) near pdx −= , otherwise, 

free electrons would keep on moving (not in steady state). 
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(ii) ndx <<0 : 

Similar with the procedure we just perform: 

43
2

2

2

2
)(, cxcxeNxVeN

dx
Vd

D

D
D

D

DD ++−=⇒−=
εε

. 

And BC: n
D

D
n

D

D
nD deNccdeNdV

εε
=⇒=+−⇒=′ 33 ,0  ,0)( . 

At the interface 0=x , the potential has to be continuous: 
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2) Consider a coaxial cable capacitor with the same geometry as that shown in Fig. 9-4 in 

the lecture notes, while the space between the conducting surfaces ( bra << ) is filled 

with two dielectric media of permittivities 1ε , 2ε  according to: 
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ε  (r, φ are with cylindrical coordinates). 

2a) (10%) Deposit charges of +Q and −Q on the inner and outer conducting surfaces, 

respectively. Find the electric flux density D
v

 in the dielectric region bra << . 

(Hint: Use boundary condition.) 

Answer:  

Let 1Q , 2Q  represent the charges on the inner conducting surface in contact with 

Medium 1 and Medium 2, respectively. We also know that  21 QQQ =+ …(1). 
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By the boundary condition between Medium 1 and 2, tt EE 21 = , 
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2b) (5%) Find the corresponding capacitance C, and the effective permittivity effε  if 
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3) (10%) Problem P.3−32 of the textbook. 

Answer: 

Assumed that there are total +Q charge uniformly distributed on the surface of the inner 

metal. The positive charge will induce –Q deposit on the surface outer metal as shown 

by the figure. 

For brri << :  

From the Guess law 
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length of the transmission line. 
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Then the capacitance per unit length is 
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For orrb << : 

From the same procedure, the capacitance per unit length is 
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The total capacitance is the series connection of the two sub-capacitances, therefore 
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