Homework Problem Set #7

(Due date: 2011/04/25)

This problem set covers materials of Lesson 9. The full score is <u>40 points</u>.

1) (15%) Fig. 1 shows a simplified model of *pn*-junction. A depletion region is formed during $-d_p < x < d_n$, where net charge densities $-eN_A$ (C/m³) and eN_D (C/m³) exist for $-d_p < x < 0$ and $0 < x < d_n$, respectively. Note that $N_A d_p = N_D d_n$ holds to maintain the electric neutrality. Let the potential $V(-d_p) = 0$, find the potential distribution V(x) for $-d_p < x < d_n$ by solving Poisson's equation (with suitable boundary conditions).

2) Consider a coaxial cable capacitor with the same geometry as that shown in Fig. 9-4 in the lecture notes, while the space between the conducting surfaces (a < r < b) is filled with two dielectric media of permittivities ε_1 , ε_2 according to:

$$\varepsilon = \begin{cases} \varepsilon_1, \text{ for } \phi \in (0, \pi/2) \\ \varepsilon_2, \text{ for } \phi \in (\pi/2, 2\pi) \end{cases}$$
 (*r*, ϕ are with cylindrical coordinates).

Edited by: Shang-Da Yang

- 2a) (10%) Deposit charges of +Q and -Q on the inner and outer conducting surfaces, respectively. Find the electric flux density D in the dielectric region a < r < b.
 (*Hint*: Use boundary condition.)
- 2b) (5%) Find the corresponding capacitance C, and the effective permittivity ε_{eff} if

$$\varepsilon_{eff} \equiv \frac{C \ln(b/a)}{2\pi L}$$
 (justified by the result of Example 9-3 in the lecture notes).

3) (10%) Problem **P.3–32** of the textbook.