Homework Problem Set #6

(Due date: 2011/4/18)

This problem set covers materials of Lesson 7. The full score is 45 points + 20 bonus points.

1) When a metal is in contact with an *n*-type semiconductor (both extend infinitely in the *yz*-plane) at x = 0, free electrons of the semiconductor will diffuse into the metal and are deposited on the interface, leaving a positively charged depletion layer $\{0 < x < d\}$ with constant volume charge density ρ_v (C/m³) and permittivity ε (Fig. 1).

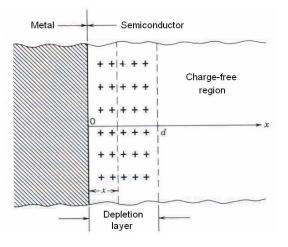


Fig. 1. Metal-semiconductor junction.

- 1a) (5%) What are the electric field intensities \vec{E} in the regions of: (i) x < 0, and (ii) x > 0, respectively? Justify your answer.
- 1b) (5%) What is the electric field intensity $\vec{E}(x)$ in the depletion layer $\{0 < x < d\}$? (*Hint*: Use Gauss's law.)

2) Consider a dielectric sphere with radius R_0 and uniform polarization vector $\vec{P} = \vec{a}_z P$.

2a) (5%) Find the surface polarization charge density distribution ρ_{ps} in spherical

coordinates.

2b) (10%) Find the electric field intensity \vec{E}_0 at the spherical center.

(Hint: Apply the result of Problem 1 of HW5.)

2c) (Bonus 20 points) Write a program to plot the normalized electric field intensity along the *z*-axis:

$$\left|\frac{\vec{E}(0,0,z)}{\vec{E}_0}\right|, \ 0 \le z/R_0 \le 5.$$

3) Consider two large parallel conducting plates of area *S* separated by a distance *d*. The region between the two conducting plates is filled with two dielectric materials with $\varepsilon_1 = 2\varepsilon_0$, $d_1 = \frac{d}{2}$, $\varepsilon_2 = \varepsilon_0$, $d_2 = \frac{d}{2}$ (Fig. 2). The top and bottom plates are deposited with free charge +Q and -Q, respectively.

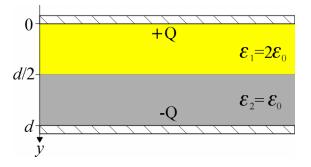


Fig. 2. Parallel-plate capacitor.

- 3a) (10%) What are the electric flux densities \vec{D}_1 , \vec{D}_2 , the electric field intensities \vec{E}_1 , \vec{E}_2 , and the polarization vectors \vec{P}_1 , \vec{P}_2 between the two plates? (*Hint*: Use Gauss's law.)
- 3b) (10%) What are the polarization surface charge densities ρ_{ps} at the three interfaces $y = 0^+$, $\frac{d}{2}$, and d^- , respectively. (*Hint*: $\rho_{ps}\left(\frac{d}{2}\right) = \rho_{ps}\left(\frac{d^-}{2}\right) + \rho_{ps}\left(\frac{d^+}{2}\right)$)