Homework Problem Set #3

(Due date: 2011/03/21)

This problem set covers materials of Lesson 4. The full score is 60 points.

- 1) Lossless transmission line with a complex load.
- 1a) (10%) Refer to Example 4-3 of the lecture notes. Plot $Z(z) \in C$ and $|V(z)/V^+|$ for $z = [-\lambda, 0]$, and find the SWR, if (i) $Z_L = Z_0(1+j) \in C$, (ii) $Z_L = Z_0(1-j) \in C$. Answer:

(i)

$$S = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|} = \frac{1 + \left|\frac{j}{2+j}\right|}{1 - \left|\frac{j}{2+j}\right|} = \frac{1.4472}{0.5528} = 2.6179$$

(ii)

1b) (5%) Define $z_{\min}(>0)$ as the shortest distance from the load to the minimum of |V(z)| (refer to Fig. 4-3b). Find the ranges of z_{\min} if $\operatorname{Im}\{Z_L\} < 0$ and $\operatorname{Im}\{Z_L\} > 0$, respectively.

Answer:

 $\lambda/4 < z_{\min} < \lambda/2$, if Im{ Z_L }>0,

 $0 < z_{\min} < \lambda/4$, if $\text{Im}\{Z_L\} < 0$.

- 2) Determination of complex voltage phasor V(z).
- 2a) (10%) The power absorbed by the load in Example 4-4 of the lecture notes can also be calculated by eq. (4.30), where we need to find V⁺ first. Evaluate V⁺ ∈ C in Example 4-4.

(Hint: Use the two boundary conditions at the source and load ends.)

Answer:

$$\Gamma_{L} = \frac{(100 - j60) - 50}{(100 - j60) + 50} = 0.483e^{-j0.496}$$

$$V_{s} = V(-l) = V^{+}e^{j\beta l} (1 + \Gamma_{L}e^{-j2\beta l}) = \frac{Z_{in}}{Z_{s} + Z_{in}}V_{0}$$

$$\Rightarrow V^{+} = \frac{Z_{in}}{(Z_{s} + Z_{in})e^{j\beta l} (1 + \Gamma_{L}e^{-j2\beta l})}V_{0} = 50e^{j2.36}$$
(V)

2b) (10%) Derive V_{max} , V_{min} , SWR, and z_{min} in Example 4-4 by the result of problem 2a and computer simulation. Are your results consistent with the formulas of eq's (4.25), (4.26)? Note that these formulas are derived by assuming resistive load ($Z_L \in R$, $\Gamma_L \in R$), while it is complex ($Z_L = 100 - j60 \Omega$) in Example 4-4.

Answer:

Derived from formulas:

$$V_{\text{max}} = |V^+|(1+|\Gamma_L|) = 50 \cdot 1.483 = 74.15$$
$$V_{\text{min}} = |V^+|(1-|\Gamma_L|) = 50 \cdot 0.571 = 25.85$$
$$SWR = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{1+|\Gamma_L|}{1-|\Gamma_L|} = \frac{74.15}{25.85} = 2.87$$

Computer simulation:

The values derived from the formulas and the simulations are the same.

Electromagnetics

3) (25%) We have seen in Example 4-4 of the lecture notes that only a fraction of power can be delivered to the load if the impedance mismatch exists ($Z_L \neq Z_0$). Section 9-7.2 (page 501) of the textbook describes how to match an arbitrary load impedance to a lossless transmission line by placing a single short-circuited stub of length l in parallel with the line at a suitable distance d from the load (Fig. 1). Can you find a set of possible parameters $\frac{d}{\lambda}$

and
$$\frac{l}{\lambda}$$
 (λ is the wavelength) if $Z_0 = 50 \Omega$ and $Z_L = 20 - j40 \Omega$?

(*Hint*: The textbook introduces the Smith chart as a convenient tool to prevent repeated calculations of complex numbers in steady-state transmission line analysis. However, complex numbers are no longer a threat in the presence of computer, eclipsing the value of the Smith chart. Just use a program to scan variable *z* for the "inverse" of eq. (4.15) (admittance), you will be able to get the approximated answers by having $Y_i = Y_B + Y_S = \frac{1}{R_0}$. Note that there are two possible values of *d* during $d = \left[0, \frac{\lambda}{2}\right]$, and two possible values of *l* during $l = \left[0, \frac{\lambda}{2}\right]$. Finding one combination is sufficient.)

Fig. 1. Impedance matching by single-stub method (after DKC).

Answer:

From the hint, our purpose is to find out the suitable Y_B and Y_S and make $Y_B + Y_S = Y_0 =$

 $1/R_0$. By eq. (4.15), we can get the input impedance from *BB*' toward Z_L , $\frac{1}{Y_B} = Z_0 \frac{Z_L - jZ_0 \tan(\beta d)}{Z_0 - jZ_L \tan(\beta d)}$, where *d* is a variable which we have to use program to scan. First, in order to find out *d*, the minimum value of the difference between the **real** part

of Y_B and Y_0 has to be found out, and the value d can be determined as shown in Fig. 2.

Fig. 2 Finding the suitable *d*.

The values of *d* are **0.043** λ and **0.187** λ respectively (for *d*= [0, $\lambda/2$]).

Second, following the similar procedure of finding *d*, find out the minimum value of the difference between the **imaginary** part of Y_B and Y_S , and the value ℓ can be gotten.

 $l = 0.410\lambda$, 0.090 λ respectively (for $l = [0, \lambda/2]$).