Homework Problem Set #2

(Due date: 2011/03/14)

This problem set covers materials of Lesson 2–3. The full score is <u>50 points</u>.

- 1) (10%) Use the bounce diagram shown in Fig. 3-4a of the lecture notes to plot the temporal voltage waveform at $z = \frac{l}{2}$, i.e., v(l/2,t). Compare it with that of Fig. 3-4b or Fig. 3-4c. What have you found?
- 2) (20%) Write a computer program to automatically plot v(z_a,t), 0≤ z_a ≤ l for a system shown in Fig. 3-1 of the lecture notes. Verify your program by plotting: (a) Fig. 3-4c of the lecture notes, and (b) the result of Problem 1.
 (*Hint*: Use the normalized quantities ^{v(z_a,t)}/_{Z₀}, ^{z_a}/_l, ^t/_{t_d} to simplify the programming.)
- 3) Consider the distributed circuit model of a lossless transmission line shown in Fig. 1. Assume the line is initially at rest, i.e. $v(z,0^-) = 0$ (zero voltage for any node N_i at $t = 0^-$), $i(z,0^-) = 0$ (zero current for any branch at $t = 0^-$).
- 3a) (5%) What is the voltage of node N_1 at $t = 0^+$, i.e. $v(0,0^+)$? What is the current along L_1 at $t = 0^+$, i.e. $i(0,0^+)$? Justify your answers. (*Hint*: Capacitor current: $i = C \cdot \frac{d}{dt}v$, inductor voltage: $v = L \cdot \frac{d}{dt}i$.)
- 3b) (5%) What is the current along C_1 at $t = 0^+$? What is the voltage of node N_2 at $t = 0^+$, i.e. $v(\Delta z, 0^+)$? (*Hint*: Borrow the result of Problem 3a.)

3c) (10%) Describe how do node voltages at N_1 , N_2 , ..., and branch currents along inductors L_1 , L_2 , ... change with time $(t > 0^+)$? Justify the "wave" behavior accordingly.

Fig. 1. Circuit model of transmission line.