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Key points


 

How to represent the initial energy of L, C in the 
s-domain?


 

Why the functional forms of natural and steady- 
state responses are determined by the poles of 
transfer function H(s) and excitation source X(s), 
respectively?


 

Why the output of an LTI circuit is the 
convolution of the input and impulse response? 
How to interpret the memory of a circuit by 
convolution?
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Section 13.1 
Circuit Elements in the s 
Domain

1. Equivalent elements of R, L, C
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A resistor in the s domain


 

iv-relation in the time domain:
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By operational Laplace transform:
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Physical units: V(s) in volt-seconds, I(s) in 
ampere-seconds.
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An inductor in the s domain
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initial current


 

iv-relation in the time domain:


 

By operational Laplace transform:
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Equivalent circuit of an inductor


 

Series equivalent: 
 

Parallel equivalent:

Thévenin 
 Norton
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A capacitor in the s domain

).()( tv
dt
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initial voltage


 

iv-relation in the time domain:


 

By operational Laplace transform:
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Equivalent circuit of a capacitor


 

Parallel equivalent: 
 

Series equivalent:

Norton 
 Thévenin
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Section 13.2, 13.3 
Circuit Analysis in the s 
Domain

1. Procedures
2. Nature response of RC circuit
3. Step response of RLC circuit
4. Sinusoidal source
5. MCM
6. Superposition
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How to analyze a circuit in the s-domain?

1. Replacing each circuit element with its s-domain 
equivalent. The initial energy in L or C is taken 
into account by adding independent source in 
series or parallel with the element impedance.

2. Writing & solving algebraic equations by the 
same circuit analysis techniques developed for 
resistive networks.

3. Obtaining the t-domain solutions by inverse 
Laplace transform.
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Why to operate in the s-domain?


 

It is convenient in solving transient responses of 
linear, lumped parameter circuits, for the initial 
conditions have been incorporated into the 
equivalent circuit.


 

It is also useful for circuits with multiple essential 
nodes and meshes, for the simultaneous ODEs 
have been reduced to simultaneous algebraic 
equations.


 

It can correctly predict the impulsive response, 
which is more difficult in the t-domain (Sec. 13.8).
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Nature response of an RC circuit (1)


 

Q: i(t), v(t)=?
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Replacing the charged capacitor by a Thévenin 
equivalent circuit in the s-domain.


 

KVL,  algebraic equation & solution of I(s):
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Nature response of an RC circuit (2)


 

The t-domain solution is obtained by inverse 
Laplace transform:
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i(0+) = V0 /R, which is true for vC (0+) = vC (0-) = V0 .


 

i() = 0, which is true for capacitor becomes 
open (no loop current) in steady state.
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Nature response of an RC circuit (3)


 

To directly solve v(t), replacing the charged 
capacitor by a Norton equivalent in the s-domain.
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Solve V(s), perform inverse Laplace transform:

   ).()()( )( )(
0

1
0

1 tRitueVRCsVLtv RCt  



15

Step response of a parallel RLC (1)

iL (0-) = 0
vC (0-) = 0


 

Q: iL (t)=?
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Step response of a parallel RLC (2)


 

KCL,  algebraic equation & solution of V(s):
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Step response of a parallel RLC (3)


 

Perform partial fraction expansion and inverse 
Laplace transform:
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Transient response due to a sinusoidal source (1)


 

For a parallel RLC circuit, replace the current 
source by a sinusoidal one:                             
The algebraic equation changes:
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Steady-state 
response (source)

Natural response (RLC 
parameters)

Transient response due to a sinusoidal source (2)


 

Perform partial fraction expansion and inverse 
Laplace transform:
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Step response of a 2-mesh circuit (1)

i2 (0-) 
= 0i1 (0-) = 0


 

Q: i1 (t), i2 (t)=?
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Step response of a 2-mesh circuit (2)


 

MCM,  2 algebraic equations & solutions:
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Step response of a 2-mesh circuit (3)


 

Perform inverse Laplace
 

transform:
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Use of superposition (1)


 

Given 2 independent sources vg , ig and initially 
charged C, L,  v2 (t)=?
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Use of superposition: Vg acts alone (2)
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Use of superposition (3)
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For convenience, define admittance matrix:
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Use of superposition: Ig acts alone (4)
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Same matrix Same denominator
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Use of superposition: Energized L acts alone (5)
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Use of superposition: Energized C acts alone (6)
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The total voltage is: .""
22222 VVVVV 



29

Section 13.4, 13.5 
The Transfer Function and 
Natural Response



30

What is the transfer function of a circuit?


 

The ratio of a circuit’s output to its input in the 
s-domain:

)(
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A single circuit may have many transfer 
functions, each corresponds to some specific 
choices of input and output.
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Poles and zeros of transfer function


 

For linear and lumped-parameter circuits, H(s) 
is always a rational function of s.


 

Poles and zeros always appear in complex 
conjugate pairs.


 

The poles must lie in the left half of the s-plane 
if bounded input leads to bounded output.

Re

Im
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Example: Series RLC circuit


 

If the output is the loop current I:
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If the output is the capacitor voltage V:
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How do poles, zeros influence the solution?


 

Since Y(s) =H(s) X(s),  the partial fraction 
expansion of the output Y(s) yields a term K/(s-a) 
for each pole s =a of H(s) or X(s).


 

The functional forms of the transient (natural) 
and steady-state responses ytr (t) and yss (t) are 
determined by the poles of H(s) and X(s), 
respectively.


 

The partial fraction coefficients of Ytr (s) and Yss (s) 
are determined by both H(s) and X(s).
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Example 13.2: Linear ramp excitation (1)

50tu(t)

50/s2


 

Q: vo (t)=?
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Example 13.2 (2)


 

Only one essential node,  use NVM:
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H(s) has 2 complex conjugate poles:


 

Vg (s) = 50/s2 has 1 repeated real pole: s = 0(2).
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Example 13.2 (3)


 

The total response in the s-domain is:
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The total response in the t-domain:

poles of H(s): -3k 
 

j4k pole of Vg (s): 0(2)

expansion coefficients depend on H(s) & Vg (s)
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Example 13.2 (4)

Steady state 
component yss (t)

Total response

 = 0.33 ms, impact of ytr (t)
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Section 13.6 
The Transfer Function and 
the Convolution Integral

1. Impulse response
2. Time invariant
3. Convolution integral
4. Memory of circuit
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Impulse response


 

If the input to a linear, lumped-parameter circuit 
is an impulse (t), the output function h(t) is 
called impulse response, which happens to be 
the natural response of the circuit:
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The application of an impulse source is 
equivalent to suddenly storing energy in the 
circuit. The subsequent release of this energy 
gives rise to the natural response.
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Time invariant


 

For a linear, lumped-parameter circuit, delaying 
the input x(t) by  simply delays the response y(t) 
by  as well (time invariant):
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Motivation of working in the time domain


 

The properties of impulse response and time- 
invariance allow one to calculate the output 
function y(t) of a “linear and time invariant (LTI)” 
circuit in the t-domain only.


 

This is beneficial when x(t), h(t) are known only 
through experimental data.
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Decompose the input source x(t)


 

We can approximate x(t) by a series of 
rectangular pulses rec

 

(t-i ) of uniform width :


 

By having ,  rec
 

(t-i )/ (t-i ), x(t) 
converges to a train of impulses:
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Synthesize the output y(t) (1)


 

Since the circuit is LTI:
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As , summation  integration:
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if x(t) extends (-, )


 

By change of variable u= t-, 
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The output of an LTI circuit is the convolution of 
input and the impulse response of the circuit:
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Synthesize the output y(t) (2)
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Convolution of a causal circuit


 

For physically realizable 
circuit, no response can 
occur prior to the input 
excitation (causal),  {h(t) 
=0 for t <0}.


 

Excitation is turned on at t 
=0,  {x(t)=0 for t <0}. 
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Effect of x(t) is weighted by h(t)


 

The convolution integral


 

If h(t) is monotonically decreasing, the highest 
weight is given to the present x(t).

t0

 
t

dhtxty
0

)()()( 

shows that the value of y(t) 
is the weighted average of 
x(t) from t =0 to t = t [from 

 = t to =0 for x(t-)].
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Memory of the circuit

.)()()(
0 
t

dhtxty 

implies that the circuit 
has a memory over a 
finite interval t =[t-T,t].

T


 

If h(t) only lasts from t 
=0 to t =T, the 
convolution integral


 

If h(t) =(t), no memory, output at t only depends 
on x(t),  y(t) =x(t)*(t) =x(t), no distortion.
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Example 13.3: RL driven by a trapezoidal source (1)
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Q: vo (t)=?
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Example 13.3 (2)
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Separate into 3 intervals:
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Example 13.3 (3)


 

Since the circuit has certain memory, vo (t) has 
some distortion with respect to vi (t).
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Section 13.7 
The Transfer Function and 
the Steady-State Sinusoidal 
Response
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How to get sinusoidal steady-state response by H(s)?


 

In Chapters 9-11, we used phasor analysis to 
get steady-state response yss (t) due to a 
sinusoidal input


 

If we know H(s), yss (t) must be:
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The changes of amplitude and phase depend 
on the sampling of H(s) along the imaginary axis.
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Proof
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Obtain H(s) from H( j)


 

We can reverse the process: determine H( j) 
experimentally, then construct H(s) from the 
data (not always possible).


 

Once we know H(s), we can find the response to 
other excitation sources.
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Section 13.8 
The Impulse Function 
in Circuit Analysis
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E.g. Impulsive inductor voltage (1)


 

The opening of the switch forces the two 
inductor currents i1 , i2 change immediately by 
inducing an impulsive inductor voltage [v=Li'(t)].

i1 (0-)=10 A i2 (0-)=0


 

Q: vo (t)=?
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E.g. Equivalent circuit & solution in the s-domain (2)
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E.g. Solutions in the t-domain (3)
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To verify whether this solution vo (t) is correct, we 
need to solve i(t) as well.
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Impulsive inductor voltage (4)


 

The jump of i2 (t) from 0 to 6 A causes                  , 
contributing to a voltage impulse


 

After t > 0+,

consistent with that solved by Laplace transform.
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Key points


 

How to represent the initial energy of L, C in the 
s-domain?


 

Why the functional forms of natural and steady- 
state responses are determined by the poles of 
transfer function H(s) and excitation source X(s), 
respectively?


 

Why the output of an LTI circuit is the 
convolution of the input and impulse response? 
How to interpret the memory of a circuit by 
convolution?
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Practical Perspective 
Voltage Surges
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Why can a voltage surge occur?


 

Q: Why a voltage surge is created when a load 
is switched off?


 

Model: A sinusoidal voltage source drives three 
loads, where Rb is switched off at t =0.


 

Since i2 (t) cannot change abruptly, i1 (t) will jump 
by the amount of i3 (0-),  voltage surge occurs.
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Example


 

Let Vo =1200
 

(rms), f =60 Hz, Ra =12 , Rb =8 
, Xa =41.1 

 
(i.e. La =Xa /=109 mH), Xl =1 

 
(i.e. 

Ll =2.65 mH). Solve vo (t) for t >0-.


 

To draw the s-domain circuit, we need to 
calculate the initial inductor currents i2 (0-), i0 (0-).
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Steady-state before the switching


 

The three branch currents (rms phasors) are:

I1 =Vo /Ra =(1200)/(12 )=100
 

A,

I2 =Vo /(jXa ) = (1200)/(j41.1 )=2.92-90
 

A,

I3 =Vo /Rb =(1200)/(8 )=150
 

A,


 

The line current is: I0 = I1 + I2 + I3 =25.2-6.65
 

A.


 

Source voltage: Vg =Vo + I0 (jXl )=125-11.5
 

V.


 

The two initial inductor currents at t =0- are:


 

i2 (t)=2.92(2)cos(120t-90),  i2 (0-)=0;


 

i0 (t)=25.2(2)cos(120t-6.65),  i0 (0-) =35.4 A.
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S-domain analysis


 

The s-domain circuit is:


 

By NVM:

(Ll = 2.65 mH)

(I0 = 35.4 A)

(12 ) (La = 109 
mH)

,00 


a

o

a

o

l

glo

sL
V

R
V

sL
VILV

 
     120

85.686
120

85.686
1475
253

)(
)( 0

jsjssLLLLRs
RIsVLR

V
lalaa

agla
o 


















Vg = 
125- 
11.5

 V (rms)



66

Inverse Laplace transform
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