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Overview

m Laplace transform is a technigue that is
particularly useful in linear circuit analysis when:

1. Considering transient response (e.g. switching)
of circuits with multiple nodes and meshes.

2. The sources are more complicated than the
simple dc level jumps.

3. Introducing the concept of transfer function to
analyze frequency-dependent sinusoidal
steady-state response (Chapters 13, 14).
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Key points

m What is the definition of the Laplace transform?

m What are the Laplace transforms of unit step,
Impulse, exponential, and sinusoidal functions?

m What are the Laplace transforms of the
derivative, integral, shift, and scaling of a
function?

m How to perform partial fraction expansion for a
rational function F(s) and perform the inverse
Laplace transform?



Section 12.1

Definition of the Laplace
Transform
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What is Laplace transform?

m Transforming a real function f(t) of real variable t
to a complex function F(s) of complex variable s:

lllllll

F(s)=L{f(t)}= j;f f (et eC.

-------

kernel
m The integral will converge (1) over a portion of

the s-plane (e.g. Re(s)>0), and (2) for most of the
functions except for those of little interest (e.g. tY).

m F(s) is determined by f(t) only for t > 0. Thus we
use it to predict the response after initial
conditions have been established.



Section 12.2, 12.3

The Step and Impulse
Functions

1.  Definition of unit step function u(t)
2. Definition of impulse function (t)
3. Laplace transforms of 5(t) and &'(t)
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The unit step function u(t)

0, fort <O0;
u(t) =+ 1
1, fort>0.

[

0

m Uu(t) can be approximated by the limit of a linear
ramp function: |~

0.5
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Representation of time shift and reversal

m Time shift: Ku(t—a)
K g g P —
0 a
m Time reversal:
Ku(a—t)

K
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Example 12.1: A pulse of finite width (1)

m Q: Express the piecewise linear function f(t) as
superposition of 3 functions.

Y1 Y Y3 Y (t) = a;t + bn

t(s)
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Example 12.1 (2)

m For each interval, f(t) can be expressed as the
product of a linear function and a square pulse
(difference between two step functions).

m For example, for 1<t<3, the corresponding
linear and square pulse functions are:

Y,(t)=—2t+4, and p,(t) =u(t—1) —u(t—3).
m The entire function can be represented by:
f (t) =Y (t) Py (t) +Y, (t) P, (t) + Y3 (t) Ps (t)
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The impulse function o(t)

m An idealized math representation of sharply
peaked stimulus:

0, t=0;
0, otherwise;

j: S(t)dt =1.

o(t) =+

m o(t) has (1) zero duration, (2) infinite peak
amplitude, (3) unit area (strength).
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o(t) Is the derivative of u(t)

f(@
H s u(t) =lim f (t)
A z
(a)
f'(@)
1
2e | _
: : 5(t) =lim £/(t) =u'(t)
| l
—Ie 0 é g

(b)
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The sifting property of é-function

m Sampling of f(t) at t=a (>0) can be formulated
by integral of f(t) times &t-a):

[ f(s(t-a)dt= im :f (t)5(t —a)dt

_ (a)[lim St — a)dt} _ f(a).

o0 Ja-¢

m |t can be used in calculating the Laplace
transform of a d-function:

L{o(t)} = jooo S(t)e'dt == @ forany s e C.
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The derivative of o-function
f(@)

1/e -
Aarea: 1 o(t) = Ig'_rlg f(t)
[

—e 0 €

1@

one-sided

area = 1/e — /¢ ey fien £

~ | total area=0 o'(t) =lm 1°(t)
_el' O 1€|
|

_1/62 |




Laplace transform of o'(t)

f(@)
S =limf'@t) 1/¢€’
E—> I
|
—€ 0 e: .
—1/62 N
L{5’(t)}:lim fl(t)e Stdt_llrrg{ RSt j ( jstdt}
E—> E—> —& g
Sg R V) S¢ _ Aa—S¢ X Se —S¢&
:"me 2 2_II (e —e )s:"m(e +e7%%)s° :@
>0 S& >0 235 e—>0 23

m Even 5'(t) has well defined Laplace transform!
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Section 12.4

Laplace Transform of
Specific Functions
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E.g. Unit step function

Liu(t)} = jo“f u(t)e 'dt = jof le~dt

o0

— Re

.if Re{s}> 0.

ot '.§.-
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E.g. Single-sided exponential function

1.0 .
g >
(a>0)
(L < 1 t
0
Im
*

L{e—at}: Ooo e—ate—stdt _ OOO e—(a+s)tdt

— Re

e—(a+s)t - 1 _ —_a
= B (a N S) Zm_, |f Re{S}> —d.

>
a
| ]
| ]
| ]
| ]
| ]
| ]
| ]
q
>
_—— —_— —_— - _-— —_— —_— —_— _—
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E.g. Sinusoidal function

IANVANES
NVARV.

- . o eja)t _e—ja)t
L{sin cot}:j(sm wt)e'dt :jo >

I_[e (s—jo)t _ g (s+Ja))tht_ ( B 1 j:' : 0, 2

S—jo S+ jo

e *'dt

lllllllllllllll
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List of Laplace transform pairs (1)

Impulse

step
ramp

exponential

llllllllllllllll

lllllllllllllll

m Laplace
transform of
polynomial
functions:
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List of Laplace transform pairs (2)

sine sin wt - u(t) za) >
S“+w
_ S
cosine cos wt - u(t) —
S*+w
JE— 1
‘dampediramp | te " -u(t) 5
i (s+a)
: dampedssine | e sin at-u(t) a; 2
erevananenenees ~ (s+a) +w

m Damping by exponential decay function causes
a shift along the real axis in the s-domain.



Section 12.5

Operational Transforms
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What are operational transforms?

m Operational transforms indicate how the
mathematical operations performed on either f(t)
or F(s) are converted into the opposite domain.

m Useful in calculating the Laplace transform of a
function g(t) derived by performing some math
operation on f(t) with known F(s).
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First-order time derivative

' Y s integration b
L{f' @)= (e dt :oarti on by

_ [ f (t)e ™ :} [T ft)(-se )t

o= (0 e[ f e Stdt—sF(s)—f(O)
f  (c0)es)=0

|n|t|al condition
m E.g. 5(t)=u'(t), Liu(®)} ==,

:L{&(t)}zs%—u ) =1.
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Higher-order time derivatives

m 2nd-order derivative:
Let g(t) = f'(t), = G(s)=sF(s)— f(0).
L{f"(t)}= L{g'(t)}=sG(s) - 9(0")
= s[sF(s)— f(0)]- £(07) = s2F(s) — sf (0)- (),
Initial conditions

m nth-order derivative:

L 0)=STF(S)

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Initial conditions
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Time integral

L{jot f(x)dx} _ jo“’[ I f(x)dx}e‘“dtz [ u(tv'(tydt, where

—st

€

u(t) :_[Ot f(x)dx, =>u'(t)=f(t); V(t)=e™, = v(t) =

L{Lt f(x)dx} =u(vl; - [ u vt

llllllllllllllllllllllllllllll

- —st .

_ J'tf(x)dx (e j
| Jo A=-s)i
finite

0
~ - —5(0) 0 —s(07) ; 1 ‘E F
085 [ o | ) L0

llllllllllllll

--------------

m The formula is valid only if the function is integrable.
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Scaling

L{f(at)} = jow f (at)e 'dt; let at =t/

dt" F(s/a)
a a

1fa>0.

— L{f(at)} = jo“f f (t)e /2

m Intuitively, a larger value of a corresponds to a
narrower function in the time domain but a
broader function in the frequency domain. The
width of f (at) times the width of F(s/a) is a
constant independent of a.
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Translation in the t and s domains

m Translation in the time domain:

L{f (t—a)u(t—a)}=e *F(s), fora>0.

m Translation in the frequency domain:

L{f (e} =F(s+a).

m Both relations can be proven by change of
variable of integration.

28



Section 12.7

Inverse Transforms of
Rational Functions

1.
2.
3.
4.
5.

Distinct real roots

Distinct complex roots
Repeated real roots
Repeated complex roots
Improper rational functions
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Why only rational functions?

m For linear, lumped-parameter circuits with
constant component parameters, the s-domain
expression for v(t), I(t) are always rational
functions, I.e. ratio of two polynomials:

F(s)

~ N(s) as"+a, 8" +.+a,
D(s) bs"+b s""+.+b,

m General inverse Laplace transform:
1 I+ico
f(t)=L"F(s)j=—| F(s)e’ds,
O =LHFE)=o—]  FG)

Involves with complex integral.
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How to calculate?

m |f F(s) Is a proper (m>n) rational function, the
Inverse transform is calculated by (1) partial
fraction expansion, (2) individual inverse
transforms (4 types).

m |f F(s) Is an improper (m<n) rational function,
decompose F(s) as the summation of a
polynomial function and a proper rational
function, which are inverse transformed
individually.

31
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Type I. D(s) has distinct real roots (1)

F(o) - 6+ +12) K K, | K,

F(s)s|_ =] K, +K, i+Ki
5=0 s+8 °s+6

96(s+95)(s+12)  96(5)(12) _

(s+8)(s+6) |, (8)(6)

K,=F(s)(s+8)_ .=-72,
Ks=F(s)(s+6)__, =48

=

s(s+8)(s+6) S S+8 S+6
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Type I: D(s) has distinct real roots (2)

|:(8)2120_ {2 N 48 |
S S+8 S+6

f(t):12OL1{1} 72L1{ ! }+48L1{ L
S s+8 S +

=120L‘1{1} 72L—1{1}é‘ "+48L—1{1} -
S S S

= [120 - 72 + 48e*|u(t).

m The circuit is over-damped.

=
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Type II: D(s) has distinct complex roots (1)

F(s) = 100§S+3) ,=rootsof D(s): s=-6,-3% }4.
(s+6)(s” +6s+25)
F(s)= AL T\

S+6 S+3—j4 s+3+j4
K,=F(s)(s+6)|_ . =-12,

100(s + 3) .
K = F(S)(S+3— 14)m. =6— |8,
( )( J )‘..::?’.T.!.‘.‘. (s+6)(s+3+ J4) o 3sia J
=F(s)(s+3+ J4)‘ ............... =6+ |8 = K

=—3-j4:

--------------

m Conjugate roots must have conjugate coefficients.
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Type II: D(s) has distinct complex roots (2)

F(s) = 12+ 6—]8_ N 6+ J8 |
S+6 S+3-J4 s+3+ )4

f(t):L{ l2}+|_ 6-J8 |, 4] 6418
S+6 S+3— 4 S+3+ )4

=|-12e + (6 j8)e 1 4+ (6+ jB)e 1| u(t)
=L 12e % +e®[6- j8)e’ + (6+ j8)e ]} u(t)

~ {126 e . 2Re|(6- j8)e’]} u(t)
10/ -53
= [-12¢% + 206 cos(4t —53") | u(t).

m The circuit shows over-damped (or 1st-order)
and under-damped characteristics.
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Type lll: D(s) has repeated real roots (1)

F(s)=100(3+25)=ﬁ+@ KK,

s(s+5)° s |(s+5)° (s+5)° s+5|

highest order

..................................... /
G(s) = F(s)(s + 5)° = 1005 £ 29)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

(s +5)°
S
g‘é ........ . _ 100(20)

=K, +K, +K,(s+5) + K, (s +5)*;

= —400 = K,
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Type IlI: D(s) has repeated real roots (2)

F(o) - 1005428 K [ K, @2+ K, |
S(s+5) S |(s+95)° (s+95)° s+5]

100(s +25) % (s +5)°
s ts
s—(s+25) —2500

S° 5°

3(s +5)°’s—(s+5)°

SZ

G(s) = +K, +K,(s+5) + K, (s +5)*;

G'(s) =100

=K, + K, + 2K, (s +5);

S5 m-r




Type lll: D(s) has repeated real roots (3)

F(s) 10065+25) K, [ K, K,

3 3 T 7 T = |
S(s+5) S | (s+5)° (s+95)° s+5

— 2500 (s +5)*(2s—5)

G'(s) = — =K, > + K, + 2K, (s +5);
S S
G"(s) = 5000 _K, 2(s+5)(s° 3+53 25) L2K,,
S
G (c5y=220 _ _40-2k,, K, =-20.
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Type lll: D(s) has repeated real roots (4)

20 | —400 100 -20
F(s)=—+ -+ - +—|.
S |[(s+5)° (s+5° s+5]

o
S (s+5) (s+5) S+5

[ 2
— | 20—200L e® —100L e — 20 [u(t).
7 1!

m The circuit shows critically-damped behavior.



Type IV: D(s) has repeated complex roots (1)

768 768

F(S): 2 2: - 2 - 2
(s°+6s+25) (s+3—J4)°(s+3+ }4)

B CO I (5 T S I

(s+3—j4)° s+3—j4 (s+3+j4)° s+3+j4

hlghest order

. ............................................... 768
O A A N - ( _|_3_|_ J4)2

(5+3-J4)° , - (s+3 j4)
(s+3+j4)? ° s+3+j4 "’

é'('"'é'l"j'ii')'_(jgf —_12=K,. =K, =G'(-3+ j4)=— 3.

=K, +K,(s+3— j4)+ K,

llllllllllllllllllllllll

---------------------
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Type IV: D(s) has repeated complex roots (2)

12 -3 -2 3
(s+3—j4)° s+3—j4 (s+3+jd4)° s+3+j4

f(t)= Ll{ —12 }+c.c.(l_1{ 3290 }+c.c.)

F(s) =

(s+3— j4)? s+3-J4
= |-12te )" + c.c+ 3! 4 c.c.]u(t)
= :— 24te " cos 4t + 6 cos(4t — 90")] u(t)
_ :— 24te " cos 4t + 6e ' sin 4t] u(t).

m The circuit shows critically- and under-damped
characteristics.
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Useful transformation pairs

1 _a
sra ()
1 at
(51a) te™u(t)
K K" ]
S+a—j,8+s+a+j,8 2|K|e™ cos( Bt + 6, )u(t)
K K _
Gia—id) + it ip) 2|K |te ™ cos( 3t + 6, Ju(t)




" J
Inverse transform of improper rational functions

s* +13s° + 665 +200s + 300

s° + 45+ 20

(s +4s+10Q —ﬂ-FS—O

[ e

£(t) = 5"(t) + 46'(t) + 105 (t)
+ [— 20e™" +50e°" | u(t).

F(s) =
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Section 12.8

Poles and Zeros of F(s)
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Definition

m F(S) can be expressed as the ratio of two
factored polynomials N(s)/D(s).

m The roots of the denominator D(s) are called
poles and are plotted as Xs on the complex s-
plane.

m The roots of the numerator N(s) are called zeros
and are plotted as os on the complex s-plane.
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Example

F(s) = 8) _ (5+9)IS = (=3+ JA)lIs — (=3~ J4)]
D(s) s(s+10)[s—(-6+ j8)I[s—(-6— j8)]

s plane
—6+j8 ¥———-

| .

It
|
IIIIIIIII\I/III:A\I:II
—10 5
|

n

[ L1111

| S —

|
—6—j8 X ———

HEREEER
I
W
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Key points

m What is the definition of the Laplace transform?

m What are the Laplace transforms of unit step,
Impulse, exponential, and sinusoidal functions?

m What are the Laplace transforms of the
derivative, integral, shift, and scaling of a
function?

m How to perform partial fraction expansion for a
rational function F(s) and perform the inverse
Laplace transform?
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