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Chapter 12 
Introduction To The Laplace 
Transform  
 
12.1 Definition of the Laplace Transform 

12.2-3 The Step & Impulse Functions 

12.4  Laplace Transform of specific functions 

12.5  Operational Transforms 

12.6  Applying the Laplace Transform 

12.7  Inverse Transforms of Rational Functions 

12.8  Poles and Zeros of F(s) 

12.9  Initial- and Final-Value Theorems 
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Overview 

 Laplace transform is a technique that is 

particularly useful in linear circuit analysis when: 

1. Considering transient response (e.g. switching) 

of circuits with multiple nodes and meshes. 

2. The sources are more complicated than the 

simple dc level jumps. 

3. Introducing the concept of transfer function to 

analyze frequency-dependent sinusoidal 

steady-state response (Chapters 13, 14). 



3 

Key points 

 What is the definition of the Laplace transform? 

 What are the Laplace transforms of unit step, 

impulse, exponential, and sinusoidal functions? 

 What are the Laplace transforms of the 

derivative, integral, shift, and scaling of a 

function? 

 How to perform partial fraction expansion for a 

rational function F(s) and perform the inverse 

Laplace transform? 
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Section 12.1 

Definition of the Laplace 

Transform 
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What is Laplace transform? 

 Transforming a real function f (t) of real variable t 

to a complex function F(s) of complex variable s: 

 The integral will converge (1) over a portion of 

the s-plane (e.g. Re(s) > 0), and (2) for most of the 

functions except for those of little interest (e.g. t 
t). 

 F(s) is determined by f (t) only for t > 0-. Thus we 

use it to predict the response after initial 

conditions have been established. 

.)()}({)(
0

CdtetftfLsF st  






kernel 



6 

Section 12.2, 12.3 

The Step and Impulse 

Functions 

1. Definition of unit step function u(t) 

2. Definition of impulse function d(t) 

3. Laplace transforms of d(t) and d'(t) 
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 u(t) can be approximated by the limit of a linear 

ramp function: 

The unit step function u(t) 
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Representation of time shift and reversal 
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 Time reversal: 

 Time shift: 
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Example 12.1: A pulse of finite width (1) 

y1 y2 
y3 

 Q: Express the piecewise linear function f (t) as 

superposition of 3 functions. 
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Example 12.1 (2) 

 For each interval, f (t) can be expressed as the 

product of a linear function and a square pulse 

(difference between two step functions). 

 For example, for 1 < t < 3, the corresponding 

linear and square pulse functions are: 

 

 The entire function can be represented by: 
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The impulse function d(t) 

 An idealized math representation of sharply 

peaked stimulus: 

 d(t) has (1) zero duration, (2) infinite peak 

amplitude, (3) unit area (strength). 
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d(t) is the derivative of u(t) 
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The sifting property of d-function 

 Sampling of f (t) at t = a (>0) can be formulated 

by integral of f (t) times d(t-a): 

 It can be used in calculating the Laplace 

transform of a d-function: 
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The derivative of d-function 

area = 1 

total area = 0 

one-sided 

area = 1/ 
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Laplace transform of d'(t) 
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 Even d'(t) has well defined Laplace transform! 



16 

Section 12.4 

Laplace Transform of 

Specific Functions 
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E.g. Unit step function 
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E.g. Single-sided exponential function 

(a > 0) 
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E.g. Sinusoidal function 
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List of Laplace transform pairs (1) 
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List of Laplace transform pairs (2) 

 Damping by exponential decay function causes 

a shift along the real axis in the s-domain. 
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Section 12.5 

Operational Transforms 
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What are operational transforms? 

 Operational transforms indicate how the 

mathematical operations performed on either f (t) 

or F(s) are converted into the opposite domain. 

 Useful in calculating the Laplace transform of a 

function g(t) derived by performing some math 

operation on f (t) with known F(s).   
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First-order time derivative 
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Higher-order time derivatives 
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Time integral 
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1 0 finite 

 The formula is valid only if the function is integrable. 



27 

Scaling 

 Intuitively, a larger value of a corresponds to a 

narrower function in the time domain but a 

broader function in the frequency domain. The 

width of f (at) times the width of F(s/a) is a 

constant independent of a. 
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Translation in the t and s domains 

  .0for   ),()()(   asFeatuatfL as

 Translation in the time domain: 

  ).()( asFetfL at 

 Translation in the frequency domain: 

 Both relations can be proven by change of 

variable of integration. 
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Section 12.7 

Inverse Transforms of 

Rational Functions 

1. Distinct real roots 

2. Distinct complex roots 

3. Repeated real roots 

4. Repeated complex roots 

5. Improper rational functions 
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Why only rational functions? 

 For linear, lumped-parameter circuits with 

constant component parameters, the s-domain 

expression for v(t), i(t) are always rational 

functions, i.e. ratio of two polynomials: 

 

 

 General inverse Laplace transform: 
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How to calculate? 

 If F(s) is a proper (m > n) rational function, the 

inverse transform is calculated by (1) partial 

fraction expansion, (2) individual inverse 

transforms (4 types). 

 If F(s) is an improper (m  n) rational function, 

decompose F(s) as the summation of a 

polynomial function and a proper rational 

function, which are inverse transformed 

individually. 
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Type I: D(s) has distinct real roots (1) 
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Type I: D(s) has distinct real roots (2) 
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 The circuit is over-damped. 
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Type II: D(s) has distinct complex roots (1) 
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Type II: D(s) has distinct complex roots (2) 
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 The circuit shows over-damped (or 1st-order) 

and under-damped characteristics. 
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highest order 

Type III: D(s) has repeated real roots (1) 
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Type III: D(s) has repeated real roots (2) 
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Type III: D(s) has repeated real roots (3) 
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Type III: D(s) has repeated real roots (4) 
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 The circuit shows critically-damped behavior. 
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Type IV: D(s) has repeated complex roots (1) 
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Type IV: D(s) has repeated complex roots (2) 
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 The circuit shows critically- and under-damped 

characteristics. 
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Useful transformation pairs 
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Inverse transform of improper rational functions 
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Section 12.8 

Poles and Zeros of F(s) 
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Definition 

 F(s) can be expressed as the ratio of two 

factored polynomials N(s)/D(s). 

 The roots of the denominator D(s) are called 

poles and are plotted as Xs on the complex s-

plane. 

 The roots of the numerator N(s) are called zeros 

and are plotted as os on the complex s-plane. 



46 

Example 
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Key points 

 What is the definition of the Laplace transform? 

 What are the Laplace transforms of unit step, 

impulse, exponential, and sinusoidal functions? 

 What are the Laplace transforms of the 

derivative, integral, shift, and scaling of a 

function? 

 How to perform partial fraction expansion for a 

rational function F(s) and perform the inverse 

Laplace transform? 


