Chapter 8

Natural and Step Responses of
RLC Circuits

8.1-2 The Natural Response of a Parallel RLC
Circuit

8.3 The Step Response of a Parallel RLC
Circuit

8.4 The Natural and Step Response of a
Series RLC Circuit
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Key points

m What do the response curves of over-, under-,
and critically-damped circuits look like? How to
choose R, L, C values to achieve fast switching
or to prevent overshooting damage?

m What are the initial conditions in an RLC circuit?
How to use them to determine the expansion
coefficients of the complete solution?

m Comparisons between: (1) natural & step
responses, (2) parallel, series, or general RLC.



Section 8.1, 8.2

The Natural Response of a
Parallel RLC Circuit

1.  ODE, ICs, general solution of parallel
voltage

2.  Over-damped response
3. Under-damped response
4. Critically-damped response



" J
The governing ordinary differential equation (ODE)

I.C ; + I.TL j iR i T VO’ _|09 v(t) must
c=—=<V, I l K R v Satlsfy the_
passive sign
B . convention.

- av et | VO
m By KCL: CEJ{IOJFILV(UC”}FE_O'

m Perform time derivative, we got a linear 2nd-
order ODE of v(t) with constant coefficients:

d’v. 1 dv v
-+ + = 0.
dt* RC dt LC
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The two initial conditions (ICs)

i
C —~ Vo L ilo R v
o

m The capacitor voltage cannot change abruptly,
= Vv(0") =V, (1)
m The inductor current cannot change abruptly,
=i (0" =1,, i.(0")=-i (0")—ix(0")=-1,-V,/R,
dv, l, V,

ci.(0)=C—~ Ve (07)=V'(0") =
<:()dttoz>()()CRC

+(2)
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General solution

m Assume the solution is v(t) = Ae®, where A, s are
unknown constants to be solved.

m Substitute into the ODE, we got an algebraic
(characteristic) equation of s determined by the circuit
parameters: , S 1

S” + + =
RC LC

m Since the ODE is linear, = linear combination of
solutions remains a solution to the equation. The
general solution of v(t) must be of the form:

v(t) = Ae™ + Ae™,
where the expansion constants A, A, will be determined
by the two initial conditions.




Neper and resonance freguencies

m In general, s has two roots, which can be (1)
distinct real, (2) degenerate real, or (3) complex

conjugate pair.

1 1Y 1
31,22——+\/( j ——=—ai\/0{2—a)§,

oRC “\l2RC) LC
where
1
a=ﬁ, ...neper frequency
1
®, =——= ...resonance (natural) frequency

JLC
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Three types of natural response

m How the circuit reaches its steady state depends
on the relative magnitudes of « and

The Circuit is When Solutions
real, distinct
Over-damped a> @,
roots s,, S,
complex roots
Under-damped a< @, P )
;= (S,)
» real, equal roots
Critically-damped a=w, 1

S1= 95,
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Over-damped response (a > ,)

m The complete solution and its derivative are of
the form: o o
v(t)=Ae" + Ae™,
)
V()= Ase™ + As,e™

where s, =—a = \/oz2 —w; are distinct real.
m Substitute the two ICs:

V(0 )=A+A =V, '“(1) — solve

3
V0)=sA+sA = -t @) M




" J
Example 8.2: Discharging a parallel RLC circuit (1)

m Q:v(b), Ic(D), 1.(1), Ix(t)=7

@
i('i + L z‘,gi T
02 uF==<Vo 50 mH llo 200 O y
12_V 30 mA
o
‘ 1 1
“T2RC T 2(20002x107) e > avay,
J 1 | over-
@, = = =10kHz. damped
"V J5x107)2x107)

\
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Example 8.2: Solving the parameters (2)

m The 2 distinct real roots of s are:

-

S, = —a++/a’ — @} =—5kHz, ...[s,|<a (slow)

S, =—a — \/052 — a)g =—-20kHz. ...|s,|> «a (fast)
m The 2 expansion coefficients are:

A+ A=Y, ]
J V, :><A1+A2_12

sA1+32A2 __EO_E —5A —20A, = —450

= A =-14V,A =26V.

11
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Example 8.2: The parallel voltage evolution (3)

V(t) = Aleslt n Azeszt _ (_ 1475000t 266_20000t)V.

12

S 6

. N S,|> o (fast) Converge
& dominates to zero

2 0 =

“Over”
damp — N S| < (slow)
P § dominates
0 500 1000

time (us)
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Example 8.2: The branch currents evolution (4)
m The branch current through R is:

() =~ (L7065 1 13062 ) mA.
200 Q)

m The branch current through L is:

. 1
I, (1) =30 mA +
() SOmH-“0

m The branch current through C is:

i.(t)=(0.2 pF)% = (1467 —104e 2™ )mA

tV(t')dt' _ (566—5000t _ 120000t )mA.

13
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Example 8.2: The branch currents evolution (5)

6 .

if

~So Converge
—_ j ™ - to zero
< ”
E 0
=)
L
£ |
= .

L

I
S0 1000

time (us)

14
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General solution to under-damped response (a < w,)

m The two roots of s are complex conjugate pair:

S, » =—ai\/a2—a)§ =—atjo,,

2

where a, = \/a)g —a’ is the damped frequency.

m The general solution is reformulated as:
V(t) _ Ale(_a+jwd)t + Aze(—a—jwd)t
Alcosayt + jsina,t)+ A (cosa,t — jsinm,t)]

=e"[(A + A )cosat+ j(A - A )sinwyt]

— e (B, cosm,t + B, sin w,t).

15
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Solving the expansion coefficients B,, B, by ICs

m [he derivative of v(1) is:
V'(t) = B, (— oe™* cosw,t — w,e” " sin a)dt)
+ B, (— oe™ sinw,t + w,e” cos a)dt)

= e *|(- B, + @,B, )cos w,t — (aB, + w,B, )sin w,t]

m Substitute the two ICs:

V() =B =Vo-- (1) = solve

...(2) By, B,

Oy , V
v'(0 ):—aBl+a)dez—(§—Rg:

16
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Example 8.4: Discharging a parallel RLC circuit (1)

m Q:v(b), Ic(D), 1.(1), Ix(t)=7

®
icy | + i i i +
0125 uF=<Vo 8H llo 20 kO '
O_V -12.25 mA -
@
(05 = : = 1 =0.2 kHz
| 2RC  2(2x10")(1.25x107") ’ j;éleiwo,
1 1
NI J®a2sxi07) e damped

\

17
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Example 8.4: Solving the parameters (2)

m The damped frequency is:

0y =yt —a® =v1°—0.2? ~0.98 kHz.

m The 2 expansion coefficients are:

rBl :VO:O(I) .

B, =0,
l—eB + @B, =—20_ Yo .27 |B,~100V
| | d =2 C RC L2

18
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Example 8.4: The parallel voltage evolution (3)

V(t) = B cos @t + B,e  sin a,t ~ (100" sin 980t ) V.

80 «(1.4ms,74.1V)
m The voltage
“ e-ai‘ 4 _

M./ 7=1l/a=5ms oscillates (~w,) and
> 401 approaches the final
o value (~«), different
ch
= from the over-

0
g damped case (no
(4.6ms, -39 V) oscillation, 2 decay
gqob e N constants).
0 5 10

time (ms)

19
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Example 8.4: The branch currents evolutions (4)

m [he three branch currents are:
15

-

current, 7 (mA)

B 1)

20
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Rules for circuit designers

m |f one desires the circuit reaches the final value
as fast as possible while the minor oscillation is
of less concern, choosing R, L, C values to
satisfy under-damped condition.

m If one concerns that the response not exceed its
final value to prevent potential damage,
designing the system to be over-damped at the
cost of slower response.

21
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General solution to critically-damped response (a= w,)

m Two identical real roots of s make
V()= Ae” + Ae” = (A +A)e" = Age”,
not possible to satisfy 2 independent ICs (V,, |,)
with a single expansion constant A,,.
m The general solution Is reformulated as:
v(t)=e *(Djt+D,)

m You can prove the validity of this form by
substituting it into the ODE:

V'(t) +(RC) V(1) + (LC) "v(t) = 0.

22
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Solving the expansion coefficients D,, D, by ICs

m The derivative of v(1) is:
V(t) =D, (e - ate ™ )— aD,e* =[(D, - D, ) aD/t]e .

m Substitute the two ICs:

rV(O+) =D, =V,---(1)

3 ) 5 l, V, , = solve D, D,.
V’ + p— — —— — o o o
k (07)=D, —ab, c RO (2)

23
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Example 8.5: Discharging a parallel RLC circuit (1)

m Q: What is R such that the circuit is critically-
damped? Plot the corresponding v(t).

. O
- | —l— - .} _|_

QY ”1 m,
0.125uF =Yy 8 H lI{, R
— -12.25 mA _
@

a= @ 1-1 R—lJE—lJ 8 =4 kQ)
” 2RC JLC’ 2\Vc 2V1.25x10” '

m Increasing R tends to bring the circuit from over-
to critically- and even under-damped.

24
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Example 8.5: Solving the parameters (2)

m The neper frequency Is:
1 1

o = — 3 7 :lkHZ,
OJRC  2(4x10°)(1.25x1077)
|
=7 =—=1ms.
94

m The 2 expansion coefficients are:

D V =0---(1 )
4 1. 25( Il)lA D, =98kV/s
D~ - 2027 b, =0
C RC -2

0.125 pF

25



Example 8.5: The parallel voltage evolution (3)

V(t) = Dite ™ + D,e ™ =(98,000te ™" ) V.

80

98 V/ms ~_

B~
<L

voltage, v (V)

S N

u

‘m‘ (R =20 kQ, underdamp)

¢ “/

|
i
1

v (R=4 kQ, critical damp)

!

10

26
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Procedures of solving nature response of parallel RLC

m Calculate parameters o =(2RC)™" and @, =1/+/LC.
m \Write the form of v(t) by comparing o and o

Ae™ + Ae™ s, = -ai\/az ~w;,if a> w,,

v(t) = e (B, cosw,t + B, sina,t), @, = \/a)g ~a’,if a<a,

e *(Dt+D,)if a=a,

m Find the expansion constants (A,, A,), (B, B,), or
(Dy, D,) by two ICs: (y(0™) =V, ...(1),
4 V
— 0
V( )= C " RC

+(2)

27



Section 8.3

The Step Response of
a Parallel RLC Circuit

1.  Inhomogeneous ODE, ICs, and general
solution

28
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The homogeneous ODE

@ & O
P ‘ . e
; ttr=10
|3<‘> % C—V, L llo R v
............. | | ;
dv 1 V
m BY KCL: C—+|l.+—|vithdt' |[+—=1_.

m Perform time derivative, we got a homogeneous
ODE of v(t) independent of the source current I

d’v. 1 dv v
—+ + = 0.
dt* RC dt LC

29
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The inhomogeneous ODE

® &
_I_
C‘ t=20 :
| C— L lIL R v
Vo ly
o ®

CQH T

d " R S,:>d2iL_|_ L dip i i
— dt® RC dt LC LC
o dt’

30
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The two initial conditions (ICs)

t=0 :
ISCA C—~ L lIL R v
Vo

+ @

m The inductor current cannot change abruptly,
=i,(07) =1,-+(1)
m The capacitor voltage cannot change abruptly,
= V.(0") =V, =v_(0"),
A O)=LS i) =1)

t t:0+



" A
General solution

m The solution is the sum of final current I; =1, and
the nature response I pure(t):

IL(t) = | f T iL,nature(t)a

where the three types of nature responses were
elucidated in Section 8.2:

(

|+ Ae™ + Ae™ if a > w,,
i (1)={1, +e (B cosm,t + B.sinm,t),if a < a,

|, +e*(Dit+D))if a =,

.

32
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Example 8.7: Charging a parallel RLC circuit (1)

| .=
24
mA

m Qi )="?
) @
i =0 . +
N =o) A vy K
T~ 25 nF 25 IIlH R (),
V,=0 625 Q
® O
o= 1 = 1 =32 kHz
2RC  2(625)(2.5x107%) ’ = O @,
under-

\

), =

~Jic J(2.5x1072)(2.5x10°7%)

1 1

=40 kHz. damped

33



" J
Example 8.7: Solving the parameters (2)

m The complete solution is of the form:

i (t)=1,+e “(B/cosaw,t + B, sinw,t),

where @, =@} —a® =40> =32* =24 kHz.
m The 2 expansion coefficients are:

...... B/ =24 mA,
9 ' VO — ’

34
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Example 8.7: Inductor current evolution (3)

i ()= [24 — 247> ¢0s(24,000t) — 32> sin(24,000t)] mA.

(131 ps, 1.0157)

T

(1= 104 ps) (1=1235 ps)

()
o

overshooting

S

inductor current, i, (mA)

100 150 200 250
time (us)

09 50 100 150 200 250
time (ps)

35
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Example 8.9: Charging of parallel RLC circuits (1)

m Q: Compare I, (t) when the resistance R = 625 Q
(under-damp), 500 Q (critical damp), 400 Q
(over-damp), respectively.

© @
| 1,=0 T
l 0 )
| .= ; l o
24 —~23nF <425 IHH R V
mA V,=0
@ @

m Initial & final conditions remain: i, (07)=0, 1', (0%)=0,
l: =24 mA. Different R’s give different functional
forms and expansion constants.

36
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Example 8.9: Comparison of rise times (2)

m The current of an under-damped circuit rises
faster than that of its over-damped counterpart.

A

under-damp (¢,= 74 us)

7/ 7 Iover—damp
wd (1= 130 us)
critical damp

(=97 ps)

-
2
Sy

inductor current, i, (mA)
=

! ) ! | t'
09 50 100 150 200 250 ' me(ms)




Section 8.4
The Natural and Step

Response of a Series RLC
Circult

1.  Modifications of time constant, neper
frequency

38
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ODE of nature response

R L
— W Yl — V,, |, i(t) must
1y + satisfy the
D C=V, passive sign
convention.

o | | L
m By KVL: R|+LE+[VO+EJ‘O|(t)dt}—O.

d%i iRidi i
> H——+ = 0.
dt” :L:idt LC

1

rc N parallel RLC

m By derivative:

39
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The two initial conditions (ICs)

Iy £

m The inductor cannot change abruptly,
=i(0") =1,---(1)
m The capacitor voltage cannot change abruptly,
= Ve (07) =V, v (07) =V (07) —vp(07) =V, - IR,
di V0+I0Rm(2)

v (0 =L— , =i (0")=i"(0")=-
(0)=Lgr| - =) =109 == 40
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General solution

m Substitute i(t) = Ae™ into the ODE, we got a

different characteristic equation of s:
s’ +TS+E:O =37 =—ai\/a2 — ;.
m The form of s, , determines the form of general
solution: Ae™ + Ae™, if a >,
i(t) =< e (B, cosm,t + B, sina,t), if a < o,

e “(Dt+D,), if a = a,

llllllllllllll

: R:
where : a—i= @y = Jic’ W :\/wj—az.

llllllllllllll

(2RC)™'in parallel RLC 41
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Example 8.11: Discharging a series RLC circuit (1)

m Q: (), vp(t)="?
t=10

X
v+
ve(0)=100V, _I*
:>VO=—100V —~0.1 /,LF Ve
100V —
&
( R 560
o= = =2.8kHz,
2L 2(0.1) — O <@y,
y | i under-
@, = = =10kHz. damped
- JLC J0.1)(1x107) P

42
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Example 8.11: Solving the parameters (2)

m The damped frequency is:

0, = i —a* =10° 2.8 = 9.6 kHz.

m The 2 expansion coefficients are:

B =1 =0--( f

< 1 0 (}1(\)?\/ R :><BIZO’

— o+ @B, = - °+L’P5 .(2) |B,~1042mA
. 9.6

KHy 100 mH

43
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Example 8.11: Loop current evolution (3)
i(t) = e (B, cosa,t + B, sinag,t) = (104.26 > 5in 9,600t ) mA.

A 1

21/m, =
654 us

N
-

(134 ps, 68.7 mA)

=
-]

--------J-

loop current, i (mA)
g
S -

(461 pus, -27.5 mA)

1o
S

200 400 600 800  100p " tmelws)

-



Example 8.11: Capacitor voltage evolution (4)

v_(t) = Ri(t) + Li'(t) =

e %" (100¢0s9,600t +29.17sin9,600t) V.

100 m When the capacitor
_ energy starts to
> -~ .
‘;50 A < decrease, the

< [ |~ .

o | S iInductor energy starts
= ! /V(v(f) i(1) | to i

= % = O increase.

o U -~ She o
3 P p s = Inductor energy starts
(o ’ —
3 4 to decrease before

. | | capacitor energy

0 200 400 600 800 1000

decays to O.

45
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ODEs of step response

R ka
AAA )<¥ rYYY
I
t=20 !
+ +
m By KVL: Ri+Lﬂ+[VO+ljti(t’)dt’}:V.
dt C Yo S

m The homogeneous and inhomogeneous ODEs
of I(t) and v(t) are:

2- . - 2 : ''''' ‘-

di Rdi | 0 ddeJerijLvC Vg

-+ + =0, an 5 =
dt© Ldt LC dt L dt LC LC

46
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The two initial conditions (ICs)

: \
I
t=10 0
Vs Ci) D Vc(t);

~CV,

m The capacitor voltage cannot change abruptly,

= Ve (07) =V, -+(1)
m The inductor current cannot change abru
=1.(0") =1, =1(0"),
dv |

£ig(0)=Co8 L S v(0) =

0
0...(2
dt |, c @

ptly,

47
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General solution

m The solution is the sum of final voltage V=V,
and the nature response V¢ paure(t):

VC (t) :Vf T VC,nature (t)a

where the three types of nature responses were
elucidated in Section 8.4.

V. +Ae™ + Ae™ if a > w,,
Vo (t) =<V, +e*(B/cosa,t + B.sinw,t),if a < o,

V; +e*(Djt+D;),if o = .

48
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Key points

m What do the response curves of over-, under-,
and critically-damped circuits look like? How to
choose R, L, C values to achieve fast switching
or to prevent overshooting damage?

m What are the initial conditions in an RLC circuit?
How to use them to determine the expansion
coefficients of the complete solution?

m Comparisons between: (1) natural & step
responses, (2) parallel, series, or general RLC.

49



	Chapter 8�Natural and Step Responses of RLC Circuits
	Key points
	Section 8.1, 8.2�The Natural Response of a Parallel RLC Circuit
	The governing ordinary differential equation (ODE)
	The two initial conditions (ICs)
	General solution
	Neper and resonance frequencies 
	Three types of natural response
	Over-damped response (a > w0)
	Example 8.2: Discharging a parallel RLC circuit (1)
	Example 8.2: Solving the parameters (2)
	Example 8.2: The parallel voltage evolution (3)
	Example 8.2: The branch currents evolution (4)
	Example 8.2: The branch currents evolution (5)
	General solution to under-damped response (a < w0)
	Solving the expansion coefficients B1, B2 by ICs
	Example 8.4: Discharging a parallel RLC circuit (1)
	Example 8.4: Solving the parameters (2)
	Example 8.4: The parallel voltage evolution (3)
	Example 8.4: The branch currents evolutions (4)
	Rules for circuit designers
	General solution to critically-damped response (a = w0)
	Solving the expansion coefficients D1, D2 by ICs
	Example 8.5: Discharging a parallel RLC circuit (1)
	Example 8.5: Solving the parameters (2)
	Example 8.5: The parallel voltage evolution (3)
	Procedures of solving nature response of parallel RLC
	Section 8.3�The Step Response of�a Parallel RLC Circuit
	The homogeneous ODE
	The inhomogeneous ODE
	The two initial conditions (ICs)
	General solution
	Example 8.7: Charging a parallel RLC circuit (1)
	Example 8.7: Solving the parameters (2)
	Example 8.7: Inductor current evolution (3)
	Example 8.9: Charging of parallel RLC circuits (1)
	Example 8.9: Comparison of rise times (2)
	Section 8.4�The Natural and Step Response of a Series RLC Circuit
	ODE of nature response 
	The two initial conditions (ICs)
	General solution
	Example 8.11: Discharging a series RLC circuit (1)
	Example 8.11: Solving the parameters (2)
	Example 8.11: Loop current evolution (3)
	Example 8.11: Capacitor voltage evolution (4)
	ODEs of step response
	The two initial conditions (ICs)
	General solution
	Key points

