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Chapter 8
 Natural and Step Responses of 

RLC
 

Circuits

8.1-2 The Natural Response of a Parallel RLC 
Circuit

8.3 The Step Response of a Parallel RLC 
Circuit

8.4 The Natural and Step Response of a 
Series RLC Circuit
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Key points


 

What do the response curves of over-, under-, 
and critically-damped circuits look like? How to 
choose R, L, C values to achieve fast switching 
or to prevent overshooting damage?


 

What are the initial conditions in an RLC circuit? 
How to use them to determine the expansion 
coefficients of the complete solution?


 

Comparisons between: (1) natural & step 
responses, (2) parallel, series, or general RLC. 
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Section 8.1, 8.2 
The Natural Response of a 
Parallel RLC Circuit

1. ODE, ICs, general solution of parallel 
voltage

2. Over-damped response
3. Under-damped response
4. Critically-damped response 
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The governing ordinary differential equation (ODE)
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Perform time derivative, we got a linear 2nd- 
order ODE of v(t)

 
with constant coefficients:
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satisfy the 
passive sign 
convention.
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The two initial conditions (ICs)


 

The capacitor voltage cannot change abruptly,
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The inductor current cannot change abruptly,
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General solution
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Assume the solution is                , where A, s are 
unknown constants to be solved.



 
Substitute into the ODE, we got an algebraic 
(characteristic) equation of s determined by the circuit 
parameters:
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by the two initial conditions.
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Since the ODE is linear,  linear combination of 
solutions remains a solution to the equation. The 
general solution of v(t)

 
must be of the form:
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Neper and resonance frequencies 


 

In general, s has two roots, which can be (1) 
distinct real, (2) degenerate real, or (3) complex 
conjugate pair.
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…resonance (natural) frequency

…neper frequency
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Three types of natural response

Over-damped  
real, distinct
roots s1

 

, s2

Under-damped 
complex roots

s1 = (s2
 

)*

Critically-damped 
real, equal roots

s1 = s2

The Circuit is When Solutions


 

How the circuit reaches its steady state depends 
on the relative magnitudes of  and 0

 

:



9

where                               are distinct real.

Over-damped response ( >0
 

)


 

The complete solution and its derivative are of 
the form:
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Substitute the two ICs:
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Example 8.2: Discharging a parallel RLC circuit (1)

12 V 30 mA


 

Q: v(t), iC (t), iL (t), iR (t)=?
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Example 8.2: Solving the parameters (2)


 

The 2 distinct real roots of s are:
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The 2 expansion coefficients are:

V. 26,V 14 21  AA
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Example 8.2: The parallel voltage evolution (3)

Converge 
to zero

|s1

 

| <(slow) 
dominates

|s2

 

| >(fast) 
dominates
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Example 8.2: The branch currents evolution (4)


 

The branch current through R is:
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The branch current through L is:
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The branch current through C is:
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Example 8.2: The branch currents evolution (5)

Converge 
to zero
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where                        is the damped frequency.

General solution to under-damped response ( <0
 

)


 

The two roots of s are complex conjugate pair:
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The general solution is reformulated as:
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Solving the expansion coefficients B1
 

, B2
 

by ICs


 

Substitute the two ICs:
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The derivative of v(t)
 

is:
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Example 8.4: Discharging a parallel RLC circuit (1)

0 V
-12.25 mA


 

Q: v(t), iC (t), iL (t), iR (t)=?
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Example 8.4: Solving the parameters (2)

.kHz 98.02.01 2222
0  d


 

The damped frequency is:


 

The 2 expansion coefficients are:
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Example 8.4: The parallel voltage evolution (3)

  .V  980sin100sincos)( 200
21 teteBteBtv t
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The voltage 
oscillates (~d )

 
and 

approaches the final 
value (~), different 
from the over- 
damped case (no 
oscillation, 2 decay 
constants).
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Example 8.4: The branch currents evolutions (4)


 

The three branch currents are:
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Rules for circuit designers


 

If one desires the circuit reaches the final value 
as fast as possible while the minor oscillation is 
of less concern, choosing R, L, C values to 
satisfy under-damped condition.


 

If one concerns that the response not exceed its 
final value to prevent potential damage, 
designing the system to be over-damped at the 
cost of slower response.
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General solution to critically-damped response (=0
 

)


 

Two identical real roots of s make  


 

The general solution is reformulated as:
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not possible to satisfy 2 independent ICs (V0
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)
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You can prove the validity of this form by 
substituting it into the ODE:
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Solving the expansion coefficients D1
 

, D2
 

by ICs


 

Substitute the two ICs:
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The derivative of v(t)
 

is:
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Example 8.5: Discharging a parallel RLC circuit (1)

0 V
-12.25 mA

R


 

Q: What is R such that the circuit is critically- 
damped? Plot the corresponding v(t).
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Increasing R tends to bring the circuit from over- 
to critically- and even under-damped. 
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Example 8.5: Solving the parameters (2)


 

The neper frequency is:


 

The 2 expansion coefficients are:

ms. 11

,kHz 1
)1025.1)(104(2

1
2

1
73






 





RC



















0
skV 98

)2(

)1(0

2

1
00

21

02

D
D

RC
V

C
IDD

VD






-12.25 mA

0.125 F



26

Example 8.5: The parallel voltage evolution (3)

98 V/ms
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Procedures of solving nature response of parallel RLC


 

Calculate parameters                   and .


 
Write the form of v(t)

 
by comparing  and 

 

:


 

Find the expansion constants (A1
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Section 8.3 
The Step Response of 
a Parallel RLC Circuit

1. Inhomogeneous ODE, ICs, and general 
solution
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The homogeneous ODE
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Perform time derivative, we got a homogeneous 
ODE of v(t)
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The inhomogeneous ODE

LC
I

LC
i

dt
di

RCdt
id

dt
diLv

I
R
vi

dt
dvC

sLLL

L

sL















1

,

,
2

2


 

Change the unknown to the inductor current iL (t): 

iL
V0 I0

Is
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The two initial conditions (ICs)


 

The inductor current cannot change abruptly,
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The capacitor voltage cannot change abruptly,

Is
iL

V0 I0
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General solution

where the three types of nature responses were 
elucidated in Section 8.2:


 

The solution is the sum of final current If  = Is and 
the nature response iL,nature (t):
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Example 8.7: Charging a parallel RLC circuit (1)

625 

Is = 
24 
mA V0 = 0

I0

 

= 0


 

Q: iL (t) = ?
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Example 8.7: Solving the parameters (2)

.kHz 243240 2222
0  d


 

The complete solution is of the form:


 

The 2 expansion coefficients are:
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Example 8.7: Inductor current evolution (3)

  .mA )000,24sin(32)000,24cos(2424)( 000,32000,32 teteti tt
L
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Example 8.9: Charging of parallel RLC circuits (1)


 

Q: Compare iL (t)
 

when the resistance R = 625 
 (under-damp), 500 

 
(critical damp), 400 

 (over-damp), respectively.

Is = 
24 
mA


 

Initial & final conditions remain: iL (0+)=0, i'L (0+)=0, 
If =24 mA. Different R’s give different functional 
forms and expansion constants.

V0 = 0

I0

 

= 0
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Example 8.9: Comparison of rise times (2)


 

The current of an under-damped circuit rises 
faster than that of its over-damped counterpart.
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Section 8.4 
The Natural and Step 
Response of a Series RLC 
Circuit
1. Modifications of time constant, neper 

frequency
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ODE of nature response 
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By derivative:
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convention.
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The two initial conditions (ICs)


 

The inductor cannot change abruptly,
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The capacitor voltage cannot change abruptly,
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General solution
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Substitute                into the ODE, we got a 
different characteristic equation of s:
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determines the form of general 
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Example 8.11: Discharging a series RLC circuit (1)

vC (0-)
 

= 100 V, 
 V0

 

= -100 V

I0 = 0
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Example 8.11: Solving the parameters (2)

.kHz 6.98.210 2222
0  d


 

The damped frequency is:


 

The 2 expansion coefficients are:
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Example 8.11: Loop current evolution (3)

    .mA  600,9sin2.104sincos)( 800,2
21 tetBtBeti t

dd
t   



45

Example 8.11: Capacitor voltage evolution (4)
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When the capacitor 
energy starts to 
decrease, the 
inductor energy starts 
to increase.



 
Inductor energy starts 
to decrease before 
capacitor energy 
decays to 0.
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ODEs of step response


 

By KVL:


 

The homogeneous and inhomogeneous ODEs 
of i(t)

 
and vC (t)

 
are:
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The two initial conditions (ICs)


 

The capacitor voltage cannot change abruptly,
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The inductor current cannot change abruptly,
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General solution

where the three types of nature responses were 
elucidated in Section 8.4.


 

The solution is the sum of final voltage Vf =Vs 

and the nature response vC,nature (t):
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Key points


 

What do the response curves of over-, under-, 
and critically-damped circuits look like? How to 
choose R, L, C values to achieve fast switching 
or to prevent overshooting damage?


 

What are the initial conditions in an RLC circuit? 
How to use them to determine the expansion 
coefficients of the complete solution?


 

Comparisons between: (1) natural & step 
responses, (2) parallel, series, or general RLC. 
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