Chapter 7
Response of First-order RL
and RC Circuits

7.1-2 The Natural Response of RL and RC
Circuits

7.3 The Step Response of RL and RC
Circuits

7.4 A General Solution for Step and Natural
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7.5 Sequential Switching
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Overview

m Ch9-10 discuss “steady-state response” of
linear circuits to “sinusoidal sources”. The math
treatment is the same as the “dc response”
except for introducing “phasors” and
“Impedances” In the algebraic equations.

m From now on, we will discuss “transient
response” of linear circuits to “step sources”
(Ch7-8) and general “time-varying sources”
(Ch12-13). The math treatment involves with
differential equations and Laplace transform.



" A
First-order circuit

m A circuit that can be simplified to a Thévenin (or
Norton) equivalent connected to either a single
equivalent inductor or capacitor.
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m |[n Ch7, the source Is either none (natural
response) or step source.



" J
Key points

m Why an RC or RL circuit is charged or
discharged as an exponential function of time?

m Why the charging and discharging speed of an
RC or RL circuit is determined by RC or L/R?

m What could happen when an energy-storing
element (C or L) Is connected to a circuit with
dependent source?



Section 7.1, 7.2

The Natural Response of RL
and RC Circuits

1.  Differential equation & solution of a
discharging RL circuit

2. Time constant

3. Discharging RC circuit



What is natural response?

m |t describes the “discharging” of inductors or
capacitors via a circuit of no dependent source.

m No external source Is involved, thus termed as
“natural” response.
m The effect will vanish as r— «. The Interval

within which the natural response matters
depends on the element parameters.



" J
Circuit model of a discharging RL circuit

m Consider the following circuit model:

) R() 4. R<v

m For <0, the Inductor L is short and carries a
current 7, while R, and R carry no current.

™
A

m For r> 0, the inductor current decreases and the
energy Is dissipated via R.
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Ordinary differential equation (ODE), initial condition (I1C)

m For r> 0, the circuit reduces to:

IC depends on initial l
energy of the inductor: T I RS

i(0)=i(0)=1,=1

m By KVL, we got a first-order ODE for i():
Lii(t)+Ri(f) =0.
dt

where L, R are independent of both i, and +.



" J
Solving the loop current

ODE: Liz(t)+Rz(t) 0, IC:i(0")=1,=1;

dt
di R
— L(di)+ Ri(dt) = 0, —l——zdt,
l
i) di’ B i) R )\t
— 0 ——j‘ df Ini{’ i) zt 07

= Ini(f)~ Ini(0) =1 ’E—t) ‘%

= i(t) = ]Oe‘(f/f) , where 7 —% ..time constant



" A
Time constant describes the discharging speed

m The loop current i(¢) will drop to e! (=37%) of its
initial value 7, within one time constant z. It will
be <0.01/, after elapsing 5r.

m If i(¢) IS approximated by a linear function, it will
vanish in one time constant.

i =Ie "

Il = Iy—(ly7)t I

0.371, |- - - -
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Solutions of the voltage, power, and energy

m The voltage across R (or L) Is:

v(t) = Ri(t) =+

(0, fort <0,
kR]Oe_(t/T) for¢>0".

..abrupt change at r=0.

m The instantaneous power dissipated in R IS:

p(t)=i*()R=1Re™™", fort>0".

m The energy dissipated In the resistor R IS:
w= [ p(e')dr' = 1§R %

= w, |l -
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Initial energy stored in L
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Example 7.2: Discharge of parallel inductors (1)

m Q: Find #,(¢), i,(?), i5(¢), and the energies w,, w,
stored in L, L, In steady state (t— »).

40
® © 'A%
| | -
i y 2 t=0 3y
N 4 AT \/ o) $400 150 10 Q
L (5H) 3L, (20H)_
o~ o

m For¢<0: (1) L,, L, are short, and (2) no current
flows through any of the 4 resistors, =

i(0)=-8A, ,(0)=—4A, i,(0)=0,
w,(07)=(5H)8A)*/2=160J,w,(07) =(20)(4)* /2 =160 I



Example 7.2: Solving the equivalent RL circuit (2)

m For >0, switch Is open, the initial energy stored
In the 2 inductors is dissipated via the 4 resistors.

The equivalent circuit becomes:

@
T 4 H V(1) Reqz
L,,=(5H/20H)=4 H ;\v(o-)zo 8 O
m The solutions to i(¢), v(¢) are:
L (=T e ) — 12072 A
T = ¢q ZEZO.SS, :><l(t) 0€ € >

R, 38 v(f) = Ri(t) =96 V.
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Example 7.2: Solving the inductor currents (3)

m The two inductor currents i (¢), i,(f) can be
calculated by v(1):

40
® @] @ YW\ @
| | e |
v/ i A y 2 L=0......., § § ’3v§
Al T 00840 0 150 10 Q
L. (5H) 3L, (20 H) ,55('9 6(8_)% .
o ~......; ........ & o

. . 1 ’ r 1 e =2t g1 __ —2t
zl(t)—zl(0)+fjov(t)dt ——8+§j096e dt' =1.6-9.6¢" A.

1

. . | ’ r __ | =2t 3.1 __ —2t
zz(t)—zz(O)+L—IOv(t)dt _—4+2—Oj096e dt' =—1.6-2.4¢ A.

2
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Example 7.2: Solutions in steady state (4)
m Since
i (1)=1.6-9.6e >1.6A,
L(1)=-1.6-24e > —-1.6A,

the two inductors form a closed current loop!

m The energies stored in the two inductors are:

W, (t —> 00) = %(5 H)(1.6A) =647,

w, (t = ) = %(20)(—1 6)° =25.61,

which is ~10% of the initial energy In total.
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Example 7.2: Solving the resistor current (5)

m By current division, i;(¢) = 0.6i,,(¢), while i,,(¢) can
be calculated by v(7):

4 ()
® ® WV
: _ % —
"1 "2 t = () 40 ’3‘,
Al 4 AT o) 3400 150 10 Q
L,(5H) '3L,(20H)_
S
, v(t 96¢ ™ _
I,o(1) = 0 =9.6e”"" A.

4Q+(15Q//10Q) 10

=i(t)= %im (1) =5.76e" A.
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Circuit model of a discharging RC circuit

m Consider the following circuit model:
Ry a b

m For <0, Cis open and biased by a voltage V,
while R, and R carry no current.

m For >0, the capacitor voltage decreases and the
energy Is dissipated via R.
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ODE & IC

m For >0, the circuit reduces to:

|IC depends on initial +

energy of the capacitor. ~—— V, v l-i R
v(0")=v(0") =V, =V,

m By KCL, we got a first-order ODE for v(¢):

a v(?)
dt v(t)+ R = 0.

where C, R are independent of both v, and «.
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Solving the parallel voltage

v(?) ;
ODE: C—vt+ =0, IC:v(0")=V,=V_;
7 (1) R 0=V, =V,

= v(t)=V,e"""), where z = RC ...time constant

V(1) :
: . m Reducing R (loss)
o(t) = Voe " and parasitic C is
o0 =Vo=22r  critical for high-

Speed circuits.

[
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Solutions of the current, power, and energy

m The loop current Is:

0, fort <0,
z(t)—@ 3 o ...abrupt change at r=0.

(V,/R)e™ "), fort>0".

m The instantaneous power dissipated in R IS:

v (t) Vo2
p(t) = B

e ) fort>0"

m The energy dissipated In the resistor R Is:

lllllllllllllllllll

fort> 0.

.
------------------

Initial energy stored in C
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Procedures to get natural response of RL, RC circuits

1. Find the equivalent circuit.

2. Find the initial conditions: initial current /,
through the equivalent inductor, or initial voltage
V, across the equivalent capacitor.

3. Find the time constant of the circuit by the
values of the equivalent R, L, C:
r=L/R, or RC;
4. Directly write down the solutions:
i(t)=1,e"), v@)=V el
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Section 7.3

The Step Response of
RL and RC Circults

1.  Charging an RC circuit
2. Charging an RL circuit
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" A
What Is step response?

m The response of a circuit to the sudden
application of a constant voltage or current
source, describing the charging behavior of the
circuit.

m Step (charging) response and natural
(discharging) response show how the signal in a
digital circuit switches between Low and High
with time.
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ODE and IC of a charging RC circuit

Xt=0
: |IC depends on
+

) Initial energy of
I C) KR C the capacitor:

m Derive the governing ODE by KCL.:

v(?) dv 1

L0 B K L ,
" R dt V(o). dt T (V f)

where z=RC, V., =IR are the time constant

and final (steady-state) parallel voltage.

- w0 =v(07) =V,
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Solving the parallel voltage, branch currents

@:_l( —Vf), = av :—ldt,
t T v—Vf T
v v —I R rdo Vo=V, T’ Vo =V, ’

m The charging and discharging processes have
the same speed (same time constant z=R().

m The branch currents through C and R are:

. d V —t/t = V(t)
zc(t):CEv(t)z([S—EOje / ,zR(t):?,fort>O.
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Example 7.6 (1)

m Q:Findv,7),i,¢) for¢t=>0.

llllllllllllllllllllllllllllllllllll
** o,

20k 4 . 58kQ  40KO
: AW (= (i A=W e

(f) 0V I60kQ | 160 kO CI) 75V
. =

- .
. s*
-----------------------------------

m For ¢ <0, the switch is connected to Terminal 1
for long, the capacitor Is an open circuit:
60 kQ

v (07) = (40 V) 302600 k0 30V, i (07)=0.
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Example 7.6 (2)

m At > 0", the “charging circuit” with two terminals
2 and G can be reduced to a Norton equivalent:

20 k)
YW—=o 1 r:()/_‘2
_|_
(_)40\/ 2 60kQ
0.25 uF =
L o

v,(07) =v,(07) +__025 .
Vo ~0. :
=y =30V " i




" J
Example 7.6 (3)

m The time constant and the final capacitor
voltage of the charging circuit are:

7=RC =(40kQ)(0.25 yF) =10 ms,

V,=1R=(-1.5mA)(40kQ)=-60V.
v, () =V, +(V, =V, )™ ==60+90¢"™ V.
=i (1)=(I.-V,/R)e™ =-2.25¢"" mA.

m At the time of switching, the capacitor voltage
IS continuous:v (07)=30V =v,(0") =(-60+90) V,
while the current i, jumps from 0 to -2.25 mA.
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Charging an RL circuit

R

+ 1C depends on

A
T | "=U% initial energy of
V,_— ] L 2v(?)

the inductor:
i(07)=i(07) = I,

V= Ri(t) +L%i(r), = i(t)=1,+(1,~1,)e",

L V
T=—, [, =—7.
where - K

m The charging and discharging processes have
the same speed (same time constant r=L/R).



Section 7.5

Sequential Switching
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What is and how to solve sequential switching?

m Sequential switching means switching occurs n (=2)
times.

m It is analyzed by dividing the process into n+1 time
Intervals. Each of them corresponds to a specific
circuit.

m [nitial conditions of a particular interval are determined
from the solution of the preceding interval. Inductive
currents and capacitive voltages are particularly
Important for they cannot change abruptly.

m Laplace transform (Ch12) can solve it easily.
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Example 7.12: Charging and discharging a capacitor (1)

mQ:v(r)=?fort>0.

100 kO b{.\
=15 ms

50 kQ)

4OOV(

IC: V,=v(0")=0

—~0.1uF

mFor 0 <7< 15ms, the 400-V source charges the
capacitor via the 100-kQ resistor, = V,=400 V, 7
= RC =10 ms, and the capacitor voltage Is:

W=V, + (Ve

=400 —-400e """ V.
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Example 7.12 (2)

m For r>15 ms, the capacitor is disconnected from

the

400-V source and is discharged via the 50-

kQ resistor, = Vy=v(15ms) =310.75V, V,=0, r
= RC =5 ms. The capacitor voltage Is:

v (V)
300
200

100

v, (1) = Ve 20" = 310.75¢72%000) v

v = 400 — 400e 1"

< ,—200(t — 0.015)

t (ms)
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Section 7.6

Unbounded Response
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Definition and reason of unbounded response

m An unbounded response means the voltages or
currents increase with time without limit.

m It occurs when the Thévenin resistance is
negative (R, <0), which is possible when the
first-order circuit contains dependent sources.
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Example 7.13: (1)

m Q:v (1)=?for ¢t>0.

10VER5uF v, 10k 7iy i, $20k0

. .
., ®
------------------------------

m For >0, the capacitor seems to “discharge”
(not really, to be discussed) via a circuit with a
current-controlled current source, which can be
represented by a Thévenin equivalent. y



" J
Example 7.13 (2)

m Since there Is no independent source, V/,, =0,
while R, can be determined by the test source

method: ,
@ - L
_+_
v7 10kQ3  7i, is 1320 kO
R .
iT — VT + VT — 7 VT 9
10kQQ 20k 20 kO

= Ry, = VT/iT : 0.
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Example 7.13 (3)

m For >0, the equivalent circuit and governing
differential equation become:

Y
T t=0
—~5 /.LF (75 -5 k()

Vy=v (07)=10V, 7=RC=-25ms <0,

llllllllll

----------
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Why the voltage i1s unbounded?

m Since 10-kQ, 20-kQ resistors are in parallel, =
oo =2i,, the capacitor is actually charged (not
discharged) by a current of 4;,!

m Charging effect will increase v_, which will in turn
iIncrease the charging current (i, = v, /20 kQ) and
v, Itself. The positive feedback makes v, soaring.

X

6i,

\

+ Tor=0
10V==<5uF v, 10kQ

_

<

> l:ﬁzokn

|

®
39



" A
Lesson for circuit designers & device fabrication
engineers

m Undesired interconnection between a capacitor
and a sub-circuit with dependent source (e.qg.
transistor) could be catastrophic!
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Key points

m Why an RC or RL circuit is charged or
discharged as an exponential function of time?

m Why the charging and discharging speed of an
RC or RL circuit is determined by RC or L/R?

m What could happen when an energy-storing
element (C or L) Is connected to a circuit with
dependent source?
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