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Chapter 7 
Response of First-order RL 
and RC Circuits 

7.1-2 The Natural Response of RL and RC 
Circuits

7.3 The Step Response of RL and RC 
Circuits

7.4 A General Solution for Step and Natural 
Responses

7.5 Sequential Switching
7.6 Unbounded Response
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Overview


 

Ch9-10 discuss “steady-state response” of 
linear circuits to “sinusoidal sources”. The math 
treatment is the same as the “dc response” 
except for introducing “phasors” and 
“impedances” in the algebraic equations.


 

From now on, we will discuss “transient 
response” of linear circuits to “step sources” 
(Ch7-8) and general “time-varying sources” 
(Ch12-13). The math treatment involves with 
differential equations and Laplace transform.
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First-order circuit


 

A circuit that can be simplified to a Thévenin (or 
Norton) equivalent connected to either a single 
equivalent inductor or capacitor.


 

In Ch7, the source is either none (natural 
response) or step source.
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Key points


 

Why an RC or RL circuit is charged or 
discharged as an exponential function of time?


 

Why the charging and discharging speed of an 
RC or RL circuit is determined by RC

 
or L/R?


 

What could happen when an energy-storing 
element (C or L) is connected to a circuit with 
dependent source? 
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Section 7.1, 7.2 
The Natural Response of RL 
and RC Circuits

1. Differential equation & solution of a 
discharging RL circuit

2. Time constant
3. Discharging RC circuit
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What is natural response?


 

It describes the “discharging” of inductors or 
capacitors via a circuit of no dependent source.


 

No external source is involved, thus termed as 
“natural” response.


 

The effect will vanish as t
 

. The interval 
within which the natural response matters 
depends on the element parameters.
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Circuit model of a discharging RL circuit


 

Consider the following circuit model:


 

For t < 0, the inductor L
 

is short and carries a 
current Is

 

, while R0
 

and R
 

carry no current.


 
For t > 0, the inductor current decreases and the 
energy is dissipated via R.
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Ordinary differential equation (ODE), initial condition (IC)


 

For t > 0, the circuit reduces to:


 

By KVL, we got a first-order ODE for i(t):

where L, R
 

are independent of both i, and t.

sIIii  
0)0()0(

.0)()(  tRiti
dt
dL

IC depends on initial 
energy of the inductor:
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Solving the loop current
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Time constant describes the discharging speed


 

The loop current i(t)
 

will drop to e-1
 

(37%)
 

of its 
initial value I0

 

within one time constant . It will 
be <0.01I0

 

after elapsing 5.


 
If i(t) is approximated by a linear function, it will 
vanish in one time constant.

037.0 I
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Solutions of the voltage, power, and energy
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





.0for   ,
,0for   ,0

)()(
0 teRI

t
tRitv

t 
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= 0.


 

The voltage across R
 

(or L) is:
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2   teRIRtitp τt


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

 
The energy dissipated in the resistor R

 
is:

initial energy stored in L
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Example 7.2: Discharge of parallel inductors (1)


 

Q: Find i1
 

(t), i2
 

(t), i3
 

(t), and the energies w1
 

, w2
 stored in L1

 

, L2
 

in steady state (t
 

).


 

For t
 

<0: (1) L1
 

, L2
 

are short, and (2) no current 
flows through any of the 4

 
resistors, 

.J 1602)4)(20()0(,J 1602A) 8H)( 5()0(
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
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
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Example 7.2: Solving the equivalent RL circuit (2)


 

For t
 

>0, switch is open, the initial energy stored 
in the 2 inductors is dissipated via the 4 resistors.

The equivalent circuit becomes:


 

The solutions to i(t), v(t)
 

are:
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=(8+4)=12 A
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Example 7.2: Solving the inductor currents (3)

V 96 2te
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
 

The two inductor currents i1
 

(t), i2
 

(t)
 

can be 
calculated by v(t):
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Example 7.2: Solutions in steady state (4)


 

Since


 

The energies stored in the two inductors are:
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2
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the two inductors form a closed current loop!
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Example 7.2: Solving the resistor current (5)


 

By current division, i3
 

(t) = 0.6i4
 

(t), while i4
 

(t)
 

can 
be calculated by v(t):
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Circuit model of a discharging RC circuit


 

Consider the following circuit model:


 

For t
 

<0, C
 

is open and biased by a voltage Vg
 

, 
while R1

 

and R
 

carry no current.


 
For t

 
>0, the capacitor voltage decreases and the 

energy is dissipated via R.
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ODE & IC

.0)()( 
R
tvtv

dt
dC

gVVvv  
0)0()0(


 

By KCL, we got a first-order ODE for v(t):

where C, R
 

are independent of both v, and t.


 

For t
 

>0, the circuit reduces to:

IC depends on initial 
energy of the capacitor:
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
 

, where              …time constant

Solving the parallel voltage

;)0(:IC     ,0)()( :ODE 0 gVVv
R
tvtv

dt
dC  

RC teVtv  0)(


 

Reducing R (loss) 
and parasitic C is 
critical for high- 
speed circuits.
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Solutions of the current, power, and energy

   




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






.0for   ,
,0for   ,0)()(

0 teRV
t

R
tvti

t 
…abrupt change at t

 
= 0.


 

The loop current is:

  .0for   ,)()( 2
2

0
2

  te
R

V
R

tvtp τt


 

The instantaneous power dissipated in R
 

is:

   .0for  ,
2

  ,1)(
2

0
0

2
0

 

0

   tCVwewtdtpw τtt


 

The energy dissipated in the resistor R
 

is:

initial energy stored in C
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Procedures to get natural response of RL, RC circuits

1. Find the equivalent circuit.

2. Find the initial conditions: initial current I0
 through the equivalent inductor, or initial voltage 

V0
 

across the equivalent capacitor.

3. Find the time constant of the circuit by the 
values of the equivalent R, L, C:

4. Directly write down the solutions:
;or   , RCRL

   .)(  ,)( 00
 tt eVtveIti  
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Section 7.3 
The Step Response of 
RL and RC Circuits

1. Charging an RC circuit
2. Charging an RL circuit
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What is step response?


 

The response of a circuit to the sudden 
application of a constant voltage or current 
source, describing the charging behavior of the 
circuit.


 

Step (charging) response and natural 
(discharging) response show how the signal in a 
digital circuit switches between Low and High 
with time.
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ODE and IC of a charging RC circuit

 ,1  ),()(
fs Vv

dt
dvtv

dt
dC

R
tvI 




 

Derive the governing ODE by KCL:

0)0()0( Vvv  

where are the time constant 
and final (steady-state) parallel voltage.

IC depends on 
initial energy of 
the capacitor:

RIVRC sf     ,
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Solving the parallel voltage, branch currents
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
 

The charging and discharging processes have 
the same speed (same time constant =RC).


 

The branch currents through C and R are:
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Example 7.6 (1)


 

For t
 

<0, the switch is connected to Terminal 1 
for long, the capacitor is an open circuit:


 

Q: Find vo
 

(t), io
 

(t)
 

for t
 


 

0.

.0)0(  ,V 30
k 60)20(

k 60V) 40()0( 



 

oo iv
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Example 7.6 (2)


 

At t
 


 

0+, the “charging circuit” with two terminals 
2 and G can be reduced to a Norton equivalent:



+
v0V 30

)0()0(

0 
 

V
vv oo

G

mA 5.1sI
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Example 7.6 (3)


 

The time constant and the final capacitor 
voltage of the charging circuit are:

  .V 9060)( 100
0

tt
ffo eeVVVtv   

  .mA 25.2)( 100
0

tt
so eeRVIti   

,ms 10)F 25.0)(k 40(   RC

.V 60)k 40)(mA 5.1(  RIV sf


 

At the time of switching, the capacitor voltage 
is continuous:                                                    , 
while the current io

 

jumps from 0
 

to -2.25 mA.
V )9060()0(V 30)0( 0   vvo
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Charging an RL circuit

  ,)( ),()( 0
t

ffs eIIItiti
dt
dLtRiV 

0)0()0( Iii  

IC depends on 
initial energy of 
the inductor:

where .   ,
R
VI

R
L s

f 


 

The charging and discharging processes have 
the same speed (same time constant =L/R).



30

Section 7.5 
Sequential Switching
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What is and how to solve sequential switching?



 
Sequential switching means switching occurs n (2)

 times.


 
It is analyzed by dividing the process into n+1

 
time 

intervals. Each of them corresponds to a specific 
circuit.



 
Initial conditions of a particular interval are determined 
from the solution of the preceding interval. Inductive 
currents and capacitive voltages are particularly 
important for they cannot change abruptly.



 
Laplace transform (Ch12) can solve it easily.
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Example 7.12: Charging and discharging a capacitor (1)

t =0
t =15 ms

Q: v
 

(t)=? for t
 

≥
 

0.

0)0(0  vVIC:

For 0
 


 

t
 


 

15 ms, the 400-V
 

source charges the 
capacitor via the 100-k

 
resistor,  Vf

 

= 400 V, 
 = RC

 
=10 ms, and the capacitor voltage is:

V. 400400)()( 100
01

tt
ff eeVVVtv   
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Example 7.12 (2)


 

For t
 

>15 ms, the capacitor is disconnected from 
the 400-V

 
source and is discharged via the 50-

 k
 

resistor,  V0
 

= v1
 

(15 ms) = 310.75 V, Vf
 

= 0, 
 = RC

 
= 5 ms. The capacitor voltage is:

V. 75.310)( )015.0(200)(
02

0   ttt eeVtv 
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Section 7.6 
Unbounded Response
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Definition and reason of unbounded response


 

An unbounded response means the voltages or 
currents increase with time without limit.


 

It occurs when the Thévenin resistance is 
negative (RTh

 

<0), which is possible when the 
first-order circuit contains dependent sources. 
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Example 7.13: (1)


 

Q: vo
 

(t)=? for t
 

≥0.


 

For t
 

>0, the capacitor seems to “discharge” 
(not really, to be discussed) via a circuit with a 
current-controlled current source, which can be 
represented by a Thévenin equivalent.
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







TTTh

TTT
T

ivR

vvvi

Example 7.13 (2)


 

Since there is no independent source, VTh
 

=0, 
while RTh

 

can be determined by the test source 
method:
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Example 7.13 (3)


 

For t
 

0, the equivalent circuit and governing 
differential equation become:

..grow without limit.V. 10)( 40
0

tt
o eeVtv   

0,ms 25  V, 10)0(0   RCvV o 
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Why the voltage is unbounded?

Since 10-k, 20-k
 

resistors are in parallel, 
 i10k

 

=2i
 

, the capacitor is actually charged (not 
discharged) by a current of 4i

 

!
Charging effect will increase vo

 

, which will in turn 
increase the charging current (i

 

=
 

vo
 

/20 k)
 

and 
vo

 

itself. The positive feedback makes vo
 

soaring.
6i

2i
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Lesson for circuit designers & device fabrication 
engineers


 

Undesired interconnection between a capacitor 
and a sub-circuit with dependent source (e.g. 
transistor) could be catastrophic!



41

Key points


 

Why an RC or RL circuit is charged or 
discharged as an exponential function of time?


 

Why the charging and discharging speed of an 
RC or RL circuit is determined by RC

 
or L/R?


 

What could happen when an energy-storing 
element (C or L) is connected to a circuit with 
dependent source? 
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