Chapter 4 Techniques of Circuit Analysis

- 4.1 Terminology
- 4.2-4.4 The Node-Voltage Method (NVM)
- 4.5-4.7 The Mesh-Current Method (MCM)
- 4.8 Choosing NVM or MCM
- 4.9 Source Transformations
- 4.10-4.11 Thévenin and Norton Equivalents
- 4.12 Maximum Power Transfer
- 4.13 Superposition

Overview

- Circuit analysis by series-parallel reduction and Δ-Y transformations might be cumbersome or even impossible when the circuits are structurally complicated and/or involve with a lot of elements.
- Systematic methods that can describe circuits with minimum number of simultaneous equations are of high interest.

Key points

- How to solve a circuit by the Node-Voltage Method and Mesh-Current Method systematically?
- What is the meaning of equivalent circuit? Why is it useful?
- How to get the Thévenin equivalent circuit?
- What is superposition? Why is it useful?

Section 4.1 Terminology

Definition

TABLE 4.1 Terms for Describing Circuits	
Name	Definition
node	A point where two or more circuit elements join
essential node	A node where three or more circuit elements join
path	A trace of adjoining basic elements with no elements included more than once
branch	A path that connects two nodes
essential branch	A path which <u>connects two essential nodes</u> without passing through an essential node
loop	A path whose last node is the same as the starting node
mesh	A loop that does not enclose any other loops
planar circuit	A circuit that can be drawn on a plane with no crossing branches

Planar circuits

Circuits without crossing branches.

Example of a nonplanar circuit

Identifying essential nodes in a circuit

• Number of essential nodes is denoted by n_e .

Identifying essential branches in a circuit

• Number of essential branches is denoted by b_e .

Identifying meshes in a circuit

Section 4.2-4.4 The Node-Voltage Method (NVM)

- 1. Standard procedures
- 2. Use of supernode

Step 1: Select one of the n_e essential nodes as the reference node

Selection is arbitrary. Usually, the node connecting to the most branches is selected to simplify the formulation.

Step 2: List n_e -1 equations by KCL, Solve them

Node 1:
$$\begin{cases} \frac{v_1 - 10}{1\Omega} + \frac{v_1}{5\Omega} + \frac{v_1 - v_2}{2\Omega} = 0, \\ \frac{v_2 - v_1}{2\Omega} + \frac{v_2}{10\Omega} = 2. \end{cases} \Rightarrow \begin{bmatrix} 1.7 & -0.5 \\ -0.5 & 0.6 \end{bmatrix} \times \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 10 \\ 2 \end{bmatrix}, \\ \Rightarrow \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 9.09 \\ 10.91 \end{bmatrix} V.$$

NVM in the presence of dependent sources

Node 1: $\begin{cases} \frac{v_{1}-20}{2\Omega} + \frac{v_{1}}{20\Omega} + \frac{v_{1}-v_{2}}{5\Omega} = 0, \\ \frac{v_{2}-v_{1}}{2\Omega} + \frac{v_{2}}{2\Omega} + \frac{v_{2}-8i_{\phi}}{2\Omega} = 0, \\ \frac{v_{2}-v_{1}}{5\Omega} + \frac{v_{2}}{10\Omega} + \frac{v_{2}-8i_{\phi}}{2\Omega} = 0, \\ i_{\phi} = \frac{v_{1}-v_{2}}{5\Omega}. \end{cases} \Rightarrow \begin{bmatrix} v_{1}\\ v_{2} \end{bmatrix} = \begin{bmatrix} 16\\ 10 \end{bmatrix} V, \ i_{\phi} = 1.2 \text{ A.}$

Case of failing to derive node equation

- When a voltage source (either independent or dependent) is the only element between two essential nodes, the essential branch current is undetermined, ⇒ fail to apply KCL to either node!
 - E.g. i_{23} is undetermined, fail to apply KCL to Nodes 2, 3.

Solution 1: Add an unknown current $10 i_{\phi}$ 50 V 5 Ω 2 l_{23} **\$**40 Ω 100Ω (**\$**50 Ω 50 V 4 A $\mathbf{0}$ V

Node 2:
$$\begin{cases} \frac{v_2 - 50}{5\Omega} + \frac{v_2}{50\Omega} + i_{23} = 0, \\ \frac{v_2 - 50}{5\Omega} + \frac{v_2}{50\Omega} + \frac{v_3}{100\Omega} = 4 \cdots (1) \\ \frac{v_3}{100\Omega} = i_{23} + 4. \end{cases}$$

Source constraint: $v_3 = v_2 + 10(v_2 - v_1)/(5 \Omega)...(2)$.

Solution 2: Use supernode

By applying KCL to a supernode formed by combination of two essential nodes, one can get the same equation without the intermediate step.

Counter example (Example 4.3)

20-V source is not the only element between Nodes 1 and G, \Rightarrow branch current $i_{20V} = (v_1-20)/(2 \Omega)$ is still available, KCL can still be applied to Node 1, no need to use supernode.

Example 2.11: Amplifier circuit (1)

■ n_e =4, ⇒ 3 unknown voltages. Since i_{R} cannot be derived by node voltages, \Rightarrow 4 unknowns. The 2 voltage sources provide 2 constraints:

$$\begin{cases} v_a = V_{CC} \cdots (1) \\ v_c = v_b - V_0 \cdots (2) \end{cases}$$

Example 2.11 (2)

Apply KCL to Node b: $\frac{v_b}{R_2} + \frac{v_b - V_{CC}}{R_1} + i_B = 0 \cdots (3)$ Apply KCL to Node c: $i_{cd} = (1+\beta)i_{B},$ $\Rightarrow (1+\beta)i_B = \frac{V_c}{R_E} \cdots (4)$ Use Supernode bc

is also OK.

Section 4.5-4.7 The Mesh-Current Method (MCM)

- 1. Advantage of using mesh currents as unknowns
- 2. Use of supermesh

Branch currents as unknowns

- Number of essential branches $b_e = 3$, number of essential nodes $n_e = 2$.
- To solve $\{i_1, i_2, i_3\}$, use KCL and KVL to get n_e -1 =1 and b_e - $(n_e$ -1)=2 equations.

Advantage of using mesh currents as unknowns

- Relation between branch currents and mesh currents: $i_1 = i_a$, $i_2 = i_b$, $i_3 = i_a i_b$.
- Each mesh current flows into and out of any node on the way, ⇒ automatically satisfy KCL.

List b_e -(n_e -1) equations by KVL, Solve them

Case of failing to derive mesh equation

When a current source is between two essential nodes (no need to be the only element), the voltage drop across the source is undetermined, ⇒ fail to apply KVL to either mesh!

 E.g. v_{2G} is undetermined, fail to apply KVL to Meshes a and c.

Solution 1: Add an unknown voltage

Mesh a: $\begin{cases} (3 \Omega)(i_a - i_b) + \nu + (6 \Omega)i_a = 100, \\ (2 \Omega)(i_c - i_b) + 50 + (4 \Omega)i_c = \nu. \end{cases}$ $\Rightarrow 9i_a - 5i_b + 6i_c = 50 \cdots (1)$

Solution 2: Use supermesh

By applying KVL to a supermesh formed by combination of two meshes, one can get the same equation without the intermediate step. $(3 \Omega)(i_a - i_b) + (2 \Omega)(i_c - i_b) + 50 + (4 \Omega)i_c + (6 \Omega)i_a = 100,$

Section 4.8 The Node-Voltage Method vs. the Mesh-Current Method

- 5 meshes, no current source (no supermesh). ⇒ MCM needs 5 mesh equations.
- 4 essential nodes, the dependent voltage source is the only element on that branch (1 supernode).
 ⇒ NVM needs (4-1)-1= 2 node equations.

• Choose the reference node such that $P_{300\Omega}$ can be calculated by only solving v_2 .

Apply KCL to Supernode 1,3:

$$\frac{v_1}{100\,\Omega} + \frac{v_1 - v_2}{250\,\Omega} + \frac{v_3}{200\,\Omega} + \frac{v_3 + 256}{150\,\Omega} + \frac{v_3 - v_2}{400\,\Omega} + \frac{v_3 - 128 - v_2}{500\,\Omega} = 0\cdots(1)$$

Example 4.6 (3)

Node 2: $\frac{v_2}{300 \Omega} + \frac{v_2 - v_1}{250 \Omega} + \frac{v_2 - v_3}{450 \Omega} + \frac{v_2 + 128 - v_3}{500 \Omega} = 0 \cdots (2)$

Source constraint: $v_1 - v_3 = 50 \frac{v_2}{300 \,\Omega} = \frac{v_2}{6} \cdots (3)$

Example 4.7 (1)

- 3 meshes, 2 current sources (2 supermeshes).
 ⇒ MCM needs 1 mesh equation.
- 4 essential nodes, no voltage source is the only element on one branch (no supernode). ⇒ NVM needs (4-1)= 3 node equations.

Example 4.7 (2)

• Apply KVL to Supermesh a, b, c: $(4 \Omega + 6 \Omega)i_a + (2.5 \Omega + 7.5 \Omega)i_b + (2 \Omega + 8 \Omega)i_c$ $+ 0.8v_{\theta} = 193;$ $\therefore v_{\theta} = -i_b(7.5 \Omega), \Rightarrow 10i_a + 4i_b + 10i_c = 193\cdots(1)$

Example 4.7 (3)

By the two current source constraints:

$$i_b - i_a = 0.4 v_\Delta = 0.4 (i_c \times 2\Omega) = 0.8 i_c \cdots (2)$$

 $i_c - i_b = 0.5 \cdots (3)$

Section 4.9 Source Transformations

Source transformations

• A voltage source v_s in series with a resistor R can be replaced by a current source i_s in parallel with the same resistor R or vice versa, where

Proof of source transformation

For any load resistor R_L, the current *i* and voltage v between terminals a, b should be consistent in both configurations.

Redundant resistors

Example 4.9 (2)

To find v_o, transform the 250-V voltage source into a 10-A current source.

Example 4.9 (3)

• Now v_o is simply the voltage of the total load.

Example 4.9 (4)

• P_{250V} has to be calculated by the original circuit:

Section 4.10, 4.11 Thévenin and Norton Equivalent

- 1. Definition of equivalent circuit
- 2. Methods to get the two Thévenin equivalent circuit parameters v_{Th} , R_{Th}
- 3. Methods to get Thévenin resistance R_{Th} alone
- 4. Example of applications

Thévenin equivalent circuit

For any load resistor R_L, the current *i* and voltage *v* between terminals a, b should be consistent in both configurations.

a

b

Method 1 to get V_{Th} and R_{Th}

Find open circuit voltage $\Rightarrow v_{oc} = V_{Th}$ Find short circuit current $\Rightarrow i_{sc}$ $R_{Th} = \frac{v_{oc}}{i_{sc}}$

Example: Calculating v_{oc}

• Let terminals a, b be open, \Rightarrow no current flows through the 4- Ω resistor, $\Rightarrow v_{oc} = v_1$.

By NVM, the only unknown is the node voltage v₁. Apply KCL to Node c:

$$\frac{v_1 - 25}{5\Omega} + \frac{v_1}{20\Omega} = 3, \implies v_1 = 32 \text{ V} = V_{Th}.$$

Example: Calculating i_{sc}

• Let terminals a, b be short, $\Rightarrow i_{sc} = v_2/(4 \Omega)$.

By NVM, the only unknown is node voltage v₂. Apply KCL to Node c:

$$\frac{v_2 - 25}{5\Omega} + \frac{v_2}{20\Omega} + \frac{v_2}{4\Omega} = 3, \implies v_2 = 16 \text{ V},$$
$$i_{sc} = v_2 / (4\Omega) = 4 \text{ A}.$$

Example: Calculating R_{Th} and Norton circuit

The Thévenin resistance is:

$$R_{Th} = V_{Th} / i_{sc} = (32 \text{ V})/(4 \text{ A}) = 8 \Omega.$$

The Norton equivalent circuit can be derived by source transformation:

Method 2 to get V_{Th} and R_{Th}

Use a series of source transformations when the circuit contains only independent sources.

Method 1 to get R_{Th} alone

- For circuits with only independent sources,
- Step 1: "Deactivate" all sources: (1) Voltage source ⇒ Short, (2) Current source ⇒ Open.

Step 2: R_{Th} is the resistance seen by an observer looking into the network at the designated terminal pair.
 E.g. R_{Th} = R_{ab} = [(5 Ω)//(20 Ω)]+(4 Ω) = 8 Ω.

Method 2 to get R_{Th} alone

- For circuits with or without dependent sources:
- Step 1: Deactivate all independent sources;
- Step 2: Apply a test voltage v_T or test current i_T source to the designated terminals;
- Step 3: Calculate the terminal current i_T if a test voltage v_T source is used and vice versa;
- Step 4: Get the Thévenin resistance by $R_{Th} = \frac{v_T}{r}$.

Example 4.11: Find R_{Th} of a circuit (1)

Step 1: Deactivate all independent sources:

Example 4.11 (2)

Step 2: Assume a test voltage source v_T :

Step 3: Calculate terminal current $i_T (\propto v_T)$:

$$i_T = \frac{v_T}{25\,\Omega} + 20\left(\frac{-3v_T}{2\,\mathrm{k}\Omega}\right) = \frac{v_T}{100\,\Omega}$$

• Step 4: $R_{Th} = v_T / i_T = 100 \Omega$.

Amplifier circuit solved by equivalent circuit (1)

To find the equivalent circuit that "drives" terminals b and d (the input of a BJT transistor), we can redraw the circuit as if it were composed of two stages.

Amplifier circuit solved by equivalent circuit (2)

Amplifier circuit solved by equivalent circuit (3)

The left part can be replaced by a Thévenin circuit. With this, we can apply KVL to loop bcdb: $v_{Th} = R_{Th}i_B + V_0$ $+(1+\beta)i_{R}R_{F},$

 $\frac{V_{Th} - V_0}{R_{Th} + (1 + \beta)R_F}$

 \dot{l}_{B}

56

Section 4.12 Maximum Power Transfer

Formulation (1)

Consider a circuit (represented by a Thévenin equivalent) loaded with a resistance R_L . The power dissipation at R_L is:

$$p = i^2 R_L = \left(\frac{V_{Th}}{R_{Th} + R_L}\right) R_L,$$

 $\searrow 2$

• To find the value of R_L that leads to maximum power transfer, perform derivative:

$$\frac{dp}{dR_L} = V_{Th}^2 \left[\frac{(R_{Th} + R_L)^2 - 2R_L(R_{Th} + R_L)}{(R_{Th} + R_L)^4} \right]$$

Formulation (2)

■ When the derivative equals zero, *p* is maximized:

$$\frac{dp}{dR_L} = V_{Th}^2 \left[\frac{\left(R_{Th} + R_L\right)^2 - 2R_L\left(R_{Th} + R_L\right)}{\left(R_{Th} + R_L\right)^4} \right] = 0,$$

$$\Rightarrow \left(R_{Th} + R_L\right)^2 - 2R_L\left(R_{Th} + R_L\right) = 0,$$

$$\Rightarrow R_{Th} + R_L = 2R_L,$$

$$\Rightarrow R_L = R_{Th}$$

 \Rightarrow The maximum transfer power is:

$$p_{\max} = \left(\frac{V_{Th}}{R_{Th} + R_{Th}}\right)^2 R_{Th} = \frac{V_{Th}^2}{4R_{Th}}$$

Section 4.13 Superposition

What is superposition?

- In a circuit consisting of linear elements only, superposition allows us to activate one independent source at a time and sum the individual voltages and currents to determine the actual voltages and currents when all independent sources are active.
- Superposition is useful in designing a large system, where the impact of each independent source is critical for system optimization.

Example (1)

Example (2)

Example (3)

The 12-A (120-V) source is more important in determining i_1 , i_2 , (i_3, i_4) .

- How to solve a circuit by the Node-Voltage Method and Mesh-Current Method systematically?
- What is the meaning of equivalent circuit? Why is it useful?
- How to get the Thévenin equivalent circuit?
- What is superposition? Why is it useful?