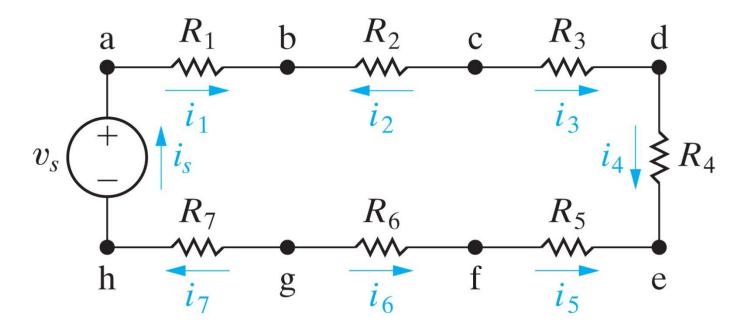
Chapter 3 Simple Resistive Circuits

- 3.1 Resistors in Series
- 3.2 Resistors in Parallel
- 3.3 The Voltage-Divider and Current-Divider Circuits
- 3.4 Voltage Division and Current Division
- 3.5 Measuring Voltage and Current
- 3.6 The Wheatstone Bridge
- 3.7 Δ -to-Y (Π -to-T) Equivalent Circuits

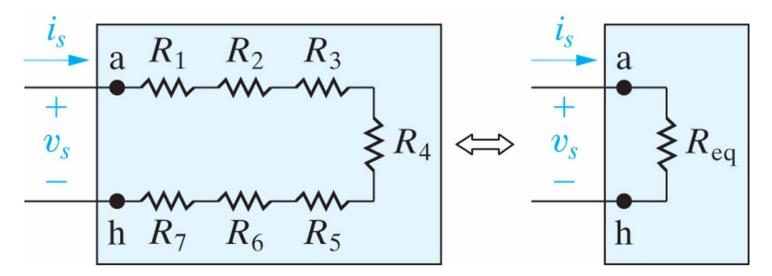
Section 3.1 Resistors in Series

Definition



- Two elements are said to be in series if they are connected at a single node.
- By KCL, all series-connected resistors carry the same current.

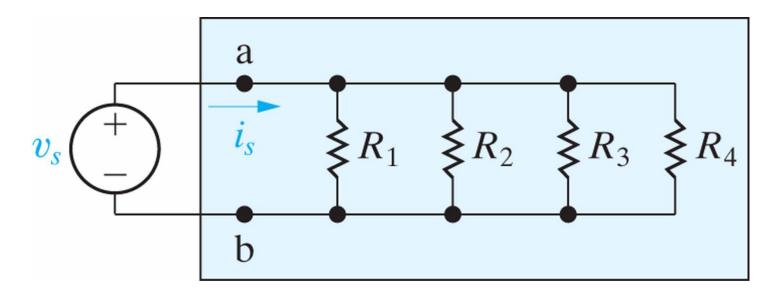
Equivalent resistor



By (1) KVL, (2) all series resistors share a common current i_s , and (3) Ohm's law, $\Rightarrow v_s = i_s R_1 + i_s R_2 + \ldots + i_s R_7 = i_s (R_1 + R_2 + \ldots + R_7) = i_s R_{eq}$, $\Rightarrow R_{eq} = \sum_{i=1}^k R_i = R_1 + R_2 + \ldots + R_k$.

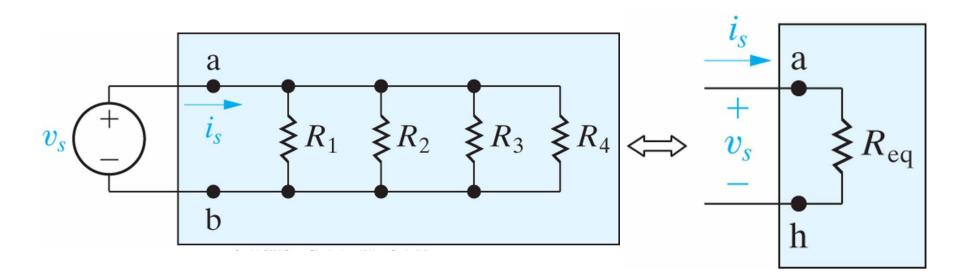
Section 3.2 Resistors in Parallel

Definition



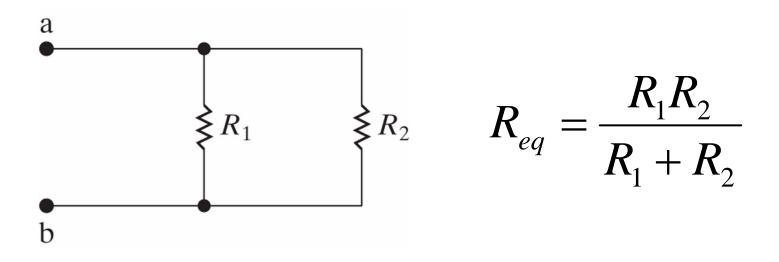
- Two elements are in parallel if they are connected at a single node pair.
- By KVL, all parallel-connected elements have the same voltage across their terminals.

Equivalent resistor



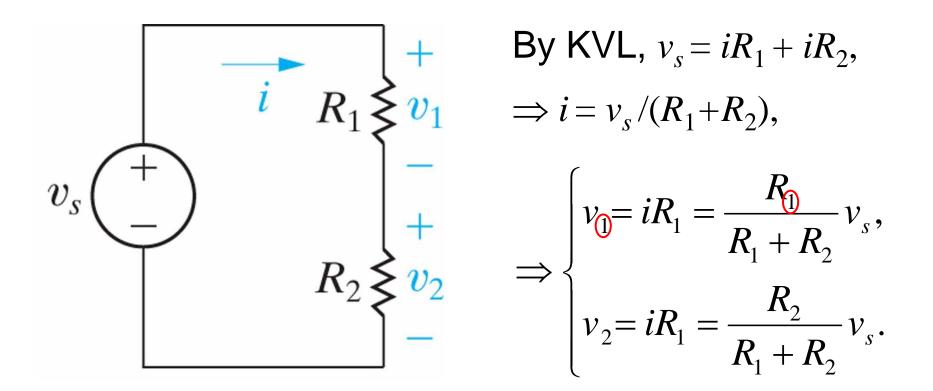
By (1) KCL, (2) all parallel resistors share a common voltage v_s , and (3) Ohm's law, $i_s = v_s/R_1 + v_s/R_2 + \ldots + v_s/R_4 = v_s(1/R_1 + 1/R_2 + \ldots + 1/R_4) = v_s/R_{eq}$, $\Rightarrow \frac{1}{R_{eq}} = \sum_{i=1}^k \frac{1}{R_i} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_k}$. Comments about resistors in parallel

- The smallest resistance dominates the equivalent value.



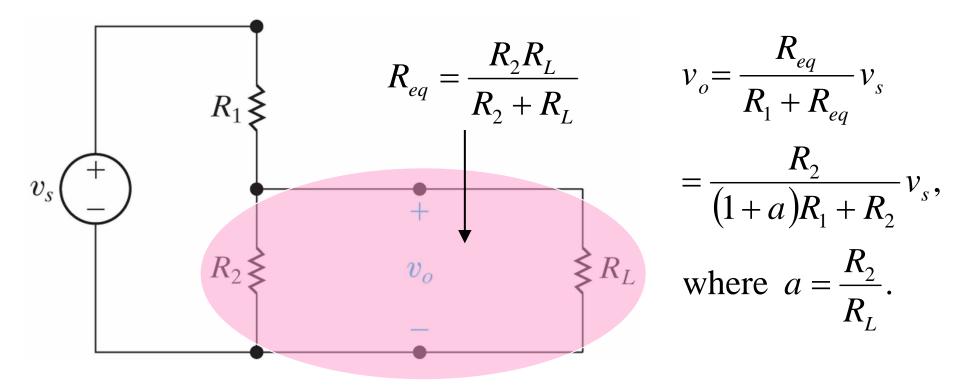
Section 3.3 The Voltage-Divider & Current-Divider Circuits

The voltage-divider circuit



 v₁, v₂ are fractions of v_s depending only on the ratio of resistance.

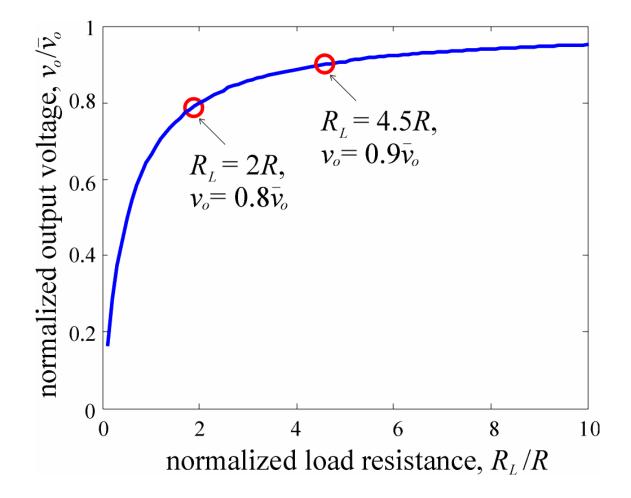
Practical concern: Load resistance



- The effect of R_1 is amplified by a factor of $a = R_2/R_L$, reducing the output voltage v_o .
 - Large load resistance $R_L >> R_2$ is preferred.

Example: output voltage vs. load resistance

Let
$$R_1 = R_2 = R$$
, \Rightarrow open - circuit output voltage $\overline{v}_o = 0.5v_s$.



Reference: Matlab[™] codes

clear	% empty the variables in the working space
close all	% close all existing figures

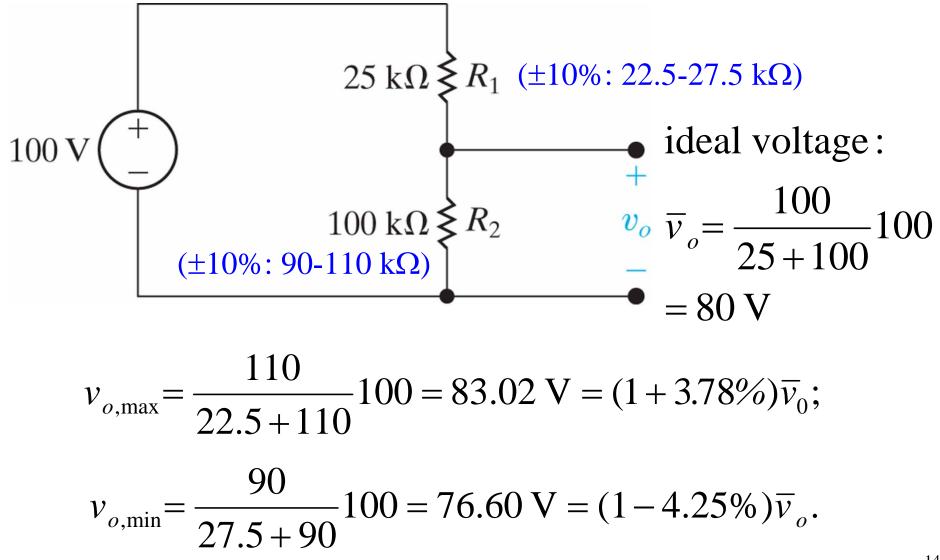
R2 = 1; % resistance R2 normalized to resistance R1

RL = linspace(0.1,10,100); % load resistance normalized to R1

vo_noload = R2/(1+R2); % output voltage normalized to vs without load vo = 1./(2+1./RL); % output voltage normalized to vs with load

plot(RL,vo/vo_noload)% plot a curveylim([0 1])% y-axis is shown between 0 and 1xlabel(['normalized load resistance, R_L/R_1'])% label the x-axisylabel(['normalized output voltage, v_o/v"_o'])% label the y-axis

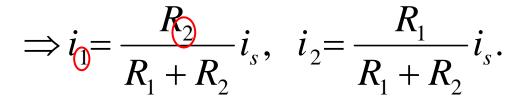
Practical concern: Tolerance of resistance



Current-divider circuit $R_1 \not = i_1 \quad v \quad R_2 \not = i_2$

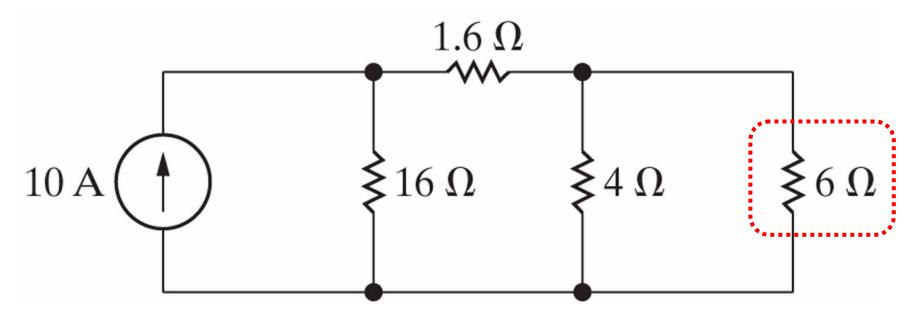
By Ohm's law & resistors in parallel,

$$v = i_1 R_1 = i_2 R_2 = i_s R_{eq} = i_s [R_1 R_2 / (R_1 + R_2)],$$



Example 3.3 (1)

Q: Find the power dissipated at the 6Ω -resistor.



Strategy: Find the current $i_{6\Omega}$, then use $p = i^2 R$ to calculate the power.

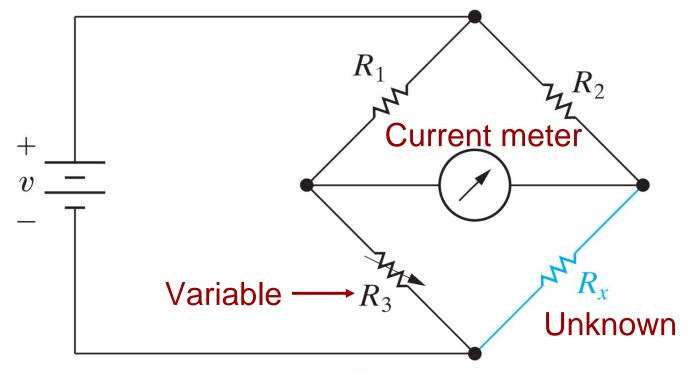
Example 3.3 (2)

Step 1: Simplifying the circuit with series-parallel 4Ω reductions. 1.6Ω 2.4Ω **\$**16 Ω 10 A 4Ω ₹6Ω $i_o = [16/(16+4)]10 = 8$ A, $4 \Omega \left\{ i_o i_{6\Omega} = [4/(6+4)]8 = 3.2 \text{ A}, \right.$ 16Ω 10 A $\Rightarrow p = (3.2)^2 6 = 61.44 \text{ W}.$

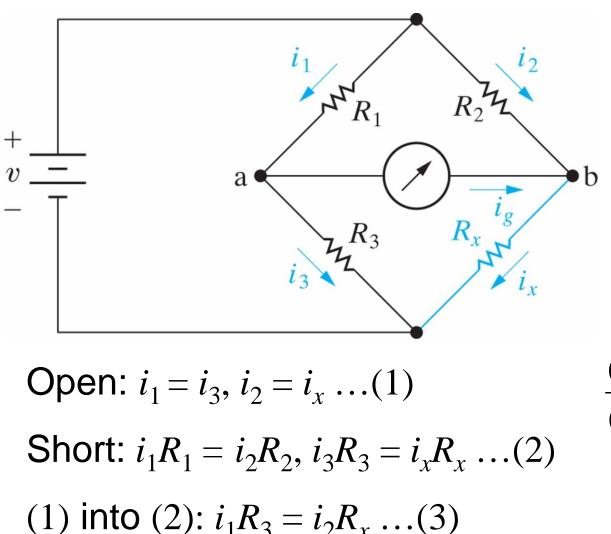
Section 3.6 The Wheatstone Bridge

The Wheatstone bridge

- Goal: Measuring a resistor's value.
- Apparatus: Fixed-value resistors 2×, variable resistor 1×, current meter 1×.



The working principle

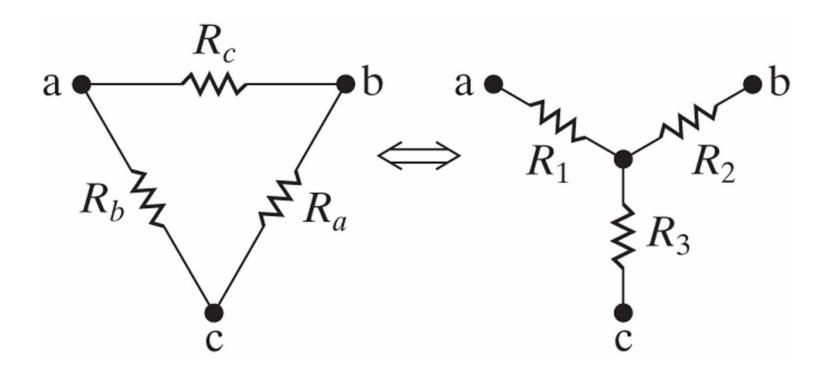


Tune R_3 until $i_{ab} = 0$, $\Rightarrow v_{ab} = 0$, terminals abbecome both open and short!

 $\frac{(2)}{(3)} = \frac{R_1}{R_3} = \frac{R_2}{R_x},$

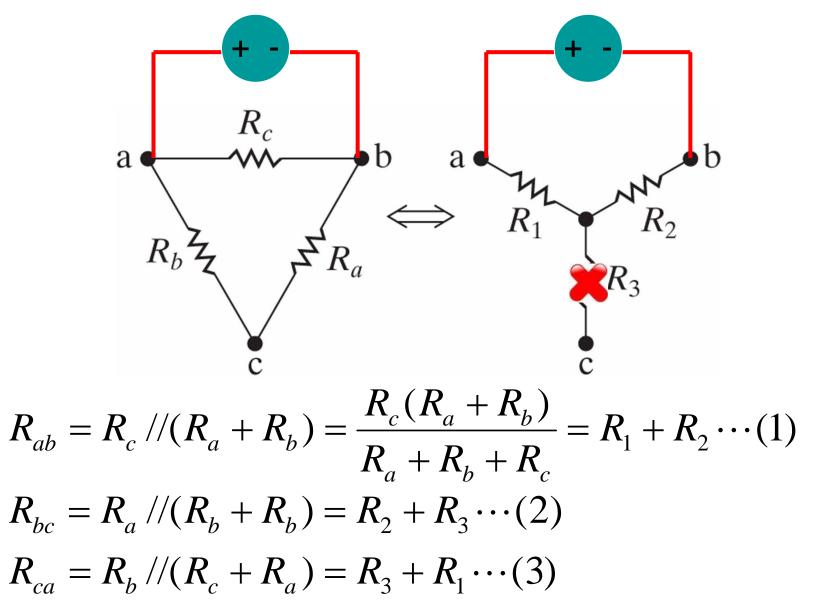
Section 3.7 Δ -to-Y (Π -to-T) Equivalent Circuits

Definition of Δ -to-Y (Π -to-T) transformation



• Two circuits of Δ and Y configurations are equivalent if the terminal behavior of the two configurations are the same. $\Rightarrow R_{ab,\Delta} = R_{ab,Y}; R_{bc,\Delta}$ $= R_{bc,Y}; R_{ca,\Delta} = R_{ca,Y}$

Terminal resistances



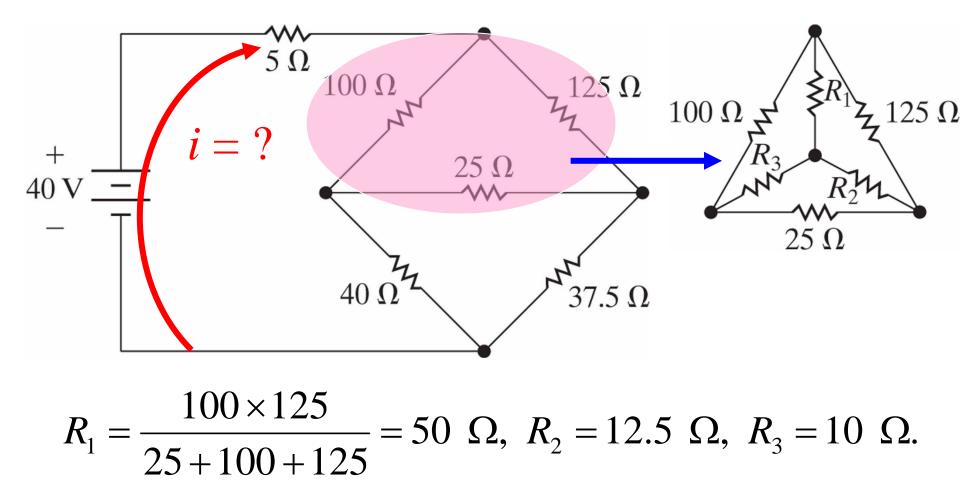
Transformation formulas

Solving simultaneous equations (1-3),

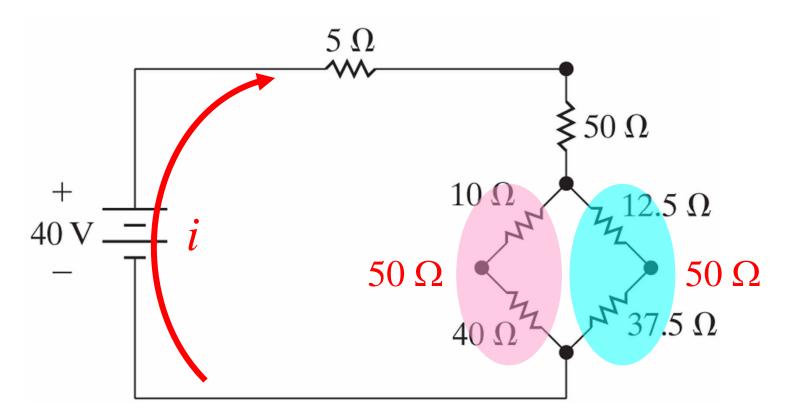
$$\begin{cases} R_1 = \frac{R_b R_c}{R_a + R_b + R_c}, \\ R_2 = \frac{R_c R_a}{R_a + R_b + R_c}, \\ R_3 = \frac{R_a R_b}{R_a + R_b + R_c}. \end{cases} \begin{cases} R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}, \\ R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}, \\ R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}. \end{cases}$$

Example 3.7 (1)

• Q: Find the source current *i*.



Example 3.7 (2)



 $R_{eq} = (5 \ \Omega) + (50 \ \Omega) + (50 / / 50 \ \Omega) = 80 \Omega,$ $i = (40 \text{ V})/(80 \Omega) = 0.5 \text{ A}.$