Chapter 2 Circuit Elements

- 2.1 Voltage and Current Sources
- 2.2 Electrical Resistance (Ohm's Law)
- 2.3 Construction of a Circuit Model
- 2.4 Kirchhoff's Laws
- 2.5 Analysis of a Circuit Containing Dependent Sources

- Microscopic view of Ohm's law.
- Physics of Kirchhoff's laws.

Section 2.1 Voltage and Current Sources

- 1. Ideal sources
- 2. Real sources
- 3. Dependent sources

Ideal voltage and current sources

- Ideal voltage source: maintains a prescribed voltage regardless of the current in the device.
- Ideal current source: maintains a prescribed current regardless of the voltage in the device.

Real voltage sources

- The output voltage V_o will change with the (1) the output current I_o , (2) the load resistance R_L .
- The entire source is modeled by an ideal one plus a series resistor R_S .

Real current sources

- The output current I_o will change with the (1) the output voltage V_o , (2) the load resistance R_L .
- The entire source is modeled by an ideal one plus a parallel resistor R_{S} .

Independent vs. dependent sources

- Independent sources: The output voltage (current) is not influenced by any other voltage or current in the circuit. All the cases shown above belong to this category.
- Dependent sources: The output voltage (current) is determined by some other voltage or current in the circuit. This happens when the circuit has active devices (e.g. transistors).

Symbols of dependent sources

Section 2.2 Electrical Resistance (Ohm's Law)

- 1. Physics
- 2. Electric power

Microscopic view of conductors

- A conductor is made of (1) immobile ions, and (2) free electrons that move fast (Fermi speed, $v_F \sim 10^6$ m/s) and randomly.
- When an external E-field is applied, electrons have slow (~mm/s) drift velocity v_d statistically.

Ohm's law

The drift velocity v_d (∞ net current i) is proportional to the applied electric field E (∞ applied voltage v), resulting in:

$$v = iR$$

if passive sign convention is held:

Comments

- The Ohm's law is valid for good conductors, instead of every material. Counter examples: vacuum tubes ($I \propto V^{1.5}$), transistors ($I \propto e^{\alpha V}$).
- Resistance depend on material, shape, and the way of connection. E.g. washer resistor:

Electric power consumption

- Microscopically, frequent collisions between free electrons and immobile ions transfer energy from electric field to thermal vibration.
- Power in a resistor in terms of current:

$$p = vi = (iR)i = i^2R$$

Power in a resistor in terms of voltage:

$$p = \frac{v^2}{R}$$

Example 2.3

$$v_a = 1 \times 8 = 8 \text{ V}$$

 $p = vi = 8 \times 1 = 8 \text{ W}$

$$v_c = iR = (-1) \times 20 = -20 \text{ V}$$

 $p = vi = (-20) \times (-1) = 20 \text{ W}$

• vi > 0, power is always dissipated in a resistor.

Section 2.4 Kirchhoff's Laws

- 1. Nodes & loops
- 2. Kirchhoff's laws & the physics

Nodes and loops

- Electric circuits consist of connected basic circuit elements.
- A node is a point where two or more circuit elements join.
- A loop is a closed path, starting and ending at the same node without passing through any intermediate node more than once.

Example:

Kirchhoff's current law (KCL)

- The algebraic sum of all the currents at any node in a circuit equals zero.
- Microscopic equivalent: Conservation of charges.

Kirchhoff's voltage law (KVL)

- The algebraic sum of all the voltages around any loop in a circuit equals zero.
- Microscopic equivalent: Static electric field is conservative

$$\oint \vec{E} \cdot d\vec{l} = 0,$$

which is not true in time-varying cases!

Example 2.6: KCL

Apply KCL over Node b:

 $(-i_1) + i_2 + (-i_a) + i_3 + (-i_b) = 0$

Example 2.7: KVL

Apply KVL over Loop a:

$$(-v_1) + v_2 + v_4 + (-v_b) + (-v_3) = 0$$

Section 2.5 Analysis of a Circuit Containing Dependent Sources

Step 1: Specify unknowns

3 branch currents: $\{i_{ab} = i_{\Delta}, i_{bc} = i_o, i_{cb} = 5i_{\Delta}\}, \Rightarrow$ only 2 independent unknowns, \Rightarrow need 2 independent equations.

- KVL for Loop cabc: $500 = 5i_{\Delta} + 20i_o \dots (1)$
- KVL for Loop cbc: -20i_o+(??) = 0, failed for voltage across a current source is undetermined.

• KCL for Node b: $i_{\Delta} + 5i_{\Delta} = i_o \dots (2) \implies i_o = 24 \text{ A}.$

Practical Perspective: Electrical Safety

- Burns is not the major electrical injury.
- Current can disturb the electrochemical signals of nerves that control oxygen supply to the brain or regulate heartbeat.
- Barely perceptible: 5 mA.
- Heart stoppage: 500 mA.

- Microscopic view of Ohm's law.
- Physics of Kirchhoff's laws.