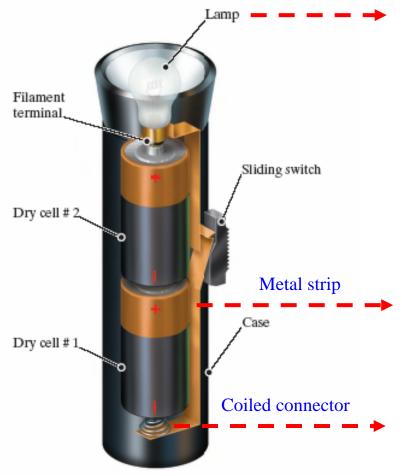
Chapter 1 Circuit Variables

- 1.1 Electrical Engineering: An Overview
- 1.2 The International System of Units
- 1.3 Circuit Analysis: An Overview
- 1.4 Voltage and Current
- 1.5 The Ideal Basic Circuit Element
- 1.6 Power and Energy

Key points

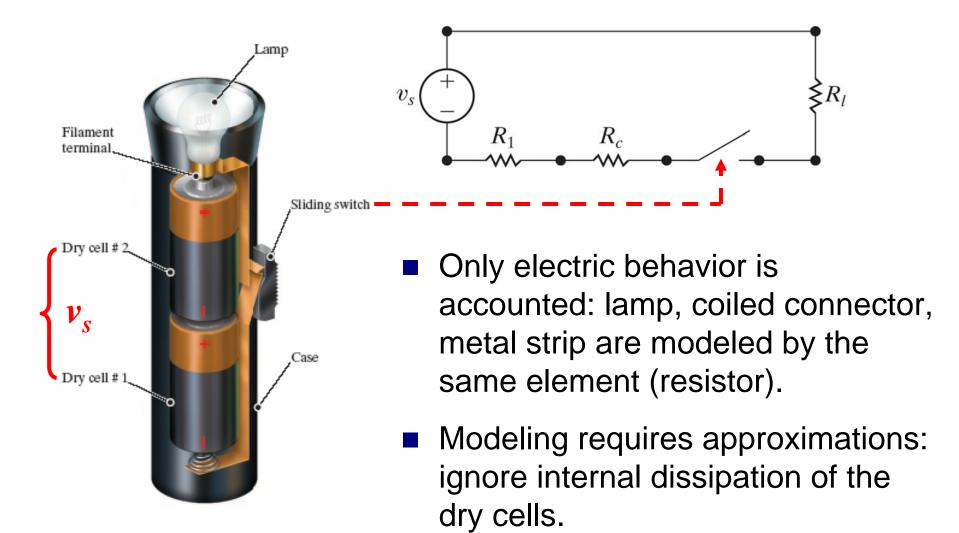
- What is the lumped-parameter assumption upon which all the circuit analysis methods introduced in this course are founded?
- What is the passive sign convention that is used in unambiguously defining the sign of each formula in circuit analysis?


Section 1.1 Electrical Engineering: An Overview

- 1. Electric circuits
- 2. Lumped-parameter assumption

What is an electric circuit?

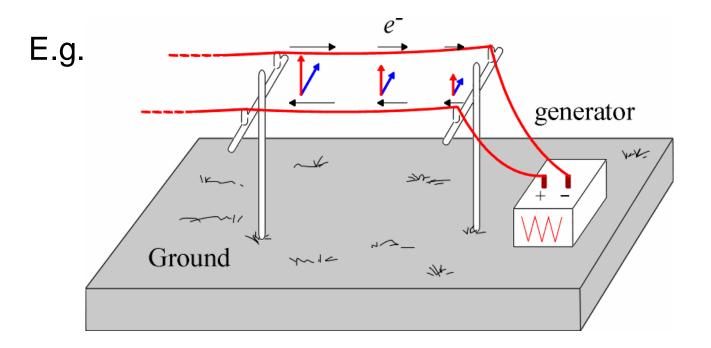
A mathematical model that approximates the behavior of an actual electrical system.


Example: Electric Circuit of a Flash Lamp (1)

Physics: Filament is heated to a temperature high enough to radiate the visible light. Modeling: a resistor R_l (only accounts for conversion of electric energy to thermal energy, not light energy).

- Physics: Conductive connection. Modeling: a resistor R_c
- Physics: Conductive connection. Modeling: a resistor R_1

Example: Electric Circuit of a Flash Lamp (2)



What is the circuit theory?

A simplified version of electromagnetic field theory, which is accurate under low frequency condition.

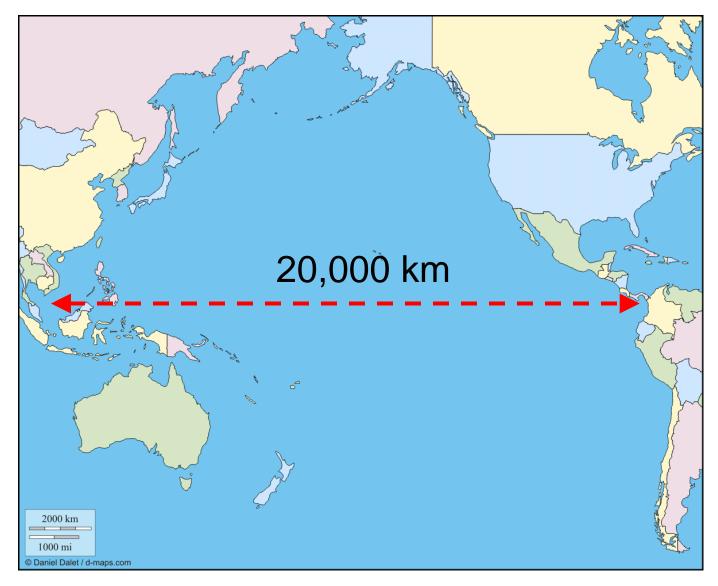
What is the electromagnetic theory?

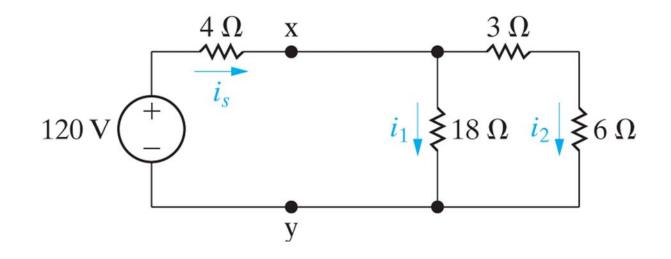
- Electric charge \rightarrow electric field.
- Electric current (moving charge) \rightarrow magnetic field.
- Time-varying fields → electromagnetic wave with properties of propagation, reflection, ...

Lumped-parameter assumption

- If the circuit size is < λ/10 (λ = c/f), electrical effects are supposed to reach every corner of the circuit instantaneously. ⇒ Electric signals do not change along the wire. All changes take place across the "lumped" elements.</p>
- E.g. Electric power is distributed with *f* = 60 Hz,
 ⇒ λ = (3×10⁸)/60 = 5×10⁶ m. Power distribution networks smaller than λ/10 = 500 km can be treated by circuit theory.

Taiwan


Continental US


Russia

Pacific Ocean

Example: A resistive circuit

- Once the 120-V voltage is connected, currents $i_1 = 4$ A, $i_2 = 8$ A are assumed to immediately flow through the 18- Ω and 6- Ω resistors.
- According to electromagnetic theory, different resistors will sense the 120-V at different times.

Section 1.2 The International System (SI) of Units

- 1. Units
- 2. Prefixes

What are SI units?

- Abbreviation from French "Système international d'unités", established in 1960.
- The SI Units are based on 7 defined quantities: length (m), mass (kg), time (s), current (A), temperature (K), amount (mol), luminous intensity (cd).
- SI units enable engineers to communicate in a meaningful way about quantitative results.

Derived units in SI

Quantity	Unit Name (Symbol)	Formula
Frequency	hertz (Hz)	s^{-1}
Force	newton (N)	$kg \cdot m/s^2$
Energy or work	joule (J)	$N \cdot m$
Power	watt (W)	J/s
Electric charge	coulomb (C)	$A \cdot s$
Electric potential	volt (V)	J/C
Electric resistance	ohm (Ω)	V/A
Electric conductance	siemens (S)	A/V
Electric capacitance	farad (F)	C/V
Magnetic flux	weber (Wb)	$V \cdot s$
Inductance	henry (H)	Wb/A

Prefixes to signify powers of 10 (1)

Engineers often use powers divisible by 3, and base numbers between 1 and 1,000.

Prefix	Symbol	Power
atto	a	10^{-18}
femto	f	10^{-15}
pico	р	10^{-12} 10^{-9} 10^{-6} 10^{-3}
nano	n	10^{-9}
micro	μ	10^{-6}
milli	m	10^{-3}
centi	с	10^{-2}
deci	d	10^{-1}

Prefixes to signify powers of 10 (2)

Prefix	Symbol	Power
deka	da	10
hecto	h	10^{2}
kilo	k	10^{3}
mega	Μ	10^{6}
giga	G	10^{9}
tera	Т	10^{12}

E.g. 10⁻⁵ s is denoted by 10 μs, instead of 0.01 ms.

Section 1.4 Voltages and Currents

- 1. Definition of voltage
- 2. Definition of current

Voltages

Voltage is the energy per unit charge.

$$v = \frac{dw}{dq}$$
 ...definition of magnitude

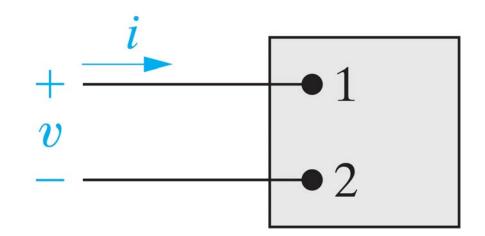
v = the voltage in volts w = the energy in joules q = the charge in coulombs ($e = 1.6022 \times 10^{-19}$ C)

Currents

Current is the rate of charge flow.

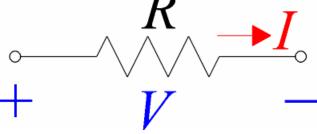
$$i = \frac{dq}{dt}$$
 ...definition of magnitude

$$i =$$
 the current in amperes


- q = the charge in coulombs
- t = the time in seconds

Section 1.5 The Ideal Basic Circuit Element

- 1. Definition of basic circuit element
- 2. Passive sign convention


Three attributes & symbol

- 1. Only two terminals, which are points of connection to other circuit components.
- 2. Described mathematically in terms of the voltage across it and/or the current through it.
- 3. Cannot be subdivided into other elements.

Passive sign convention

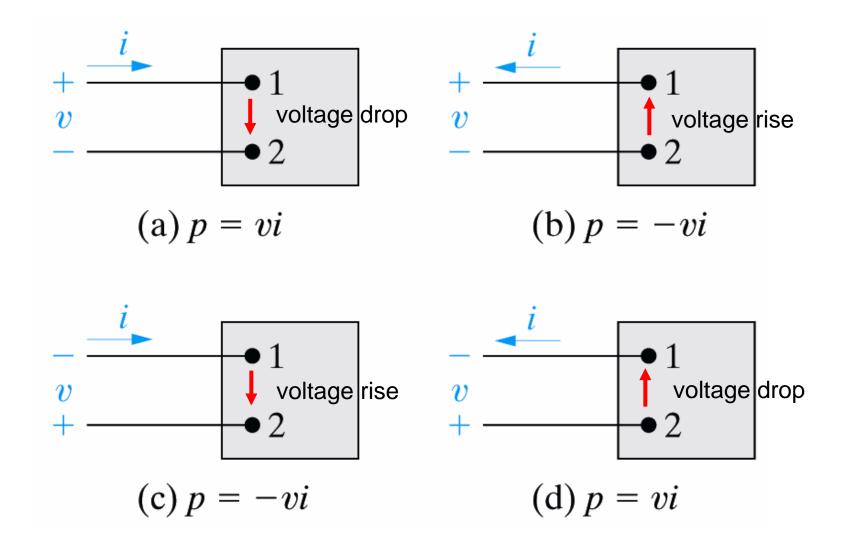
- If the reference current through the element is in the direction of the reference voltage drop across the element, we can use a positive sign in the *i*-*v* relation of the element.
- E.g. Let the reference current and voltage of the resistor satisfy the passive sign convention, \Rightarrow we have $v = +R \times i$, though the values of v, ican be >0 or <0. R

Section 1.6 Power and Energy

- 1. Definition and formula of power
- 2. Sign of power

Powers

Power is the energy per unit time.


$$p = \frac{dw}{dt} = \frac{dw}{dq}\frac{dq}{dt} = v \times i.$$

p = the power in watts w = the energy in joules t = the time in seconds v = voltage in volts

i = current in amperes

Power is associated with two terminals.

Polarity references and power expressions

Power dissipation and extraction

- As positive charges experience voltage drop, they lose energy.
- p>0 (not p = +vi): power is dissipated by the circuit inside the box.

• p < 0 (not p = -vi): power is being extracted.

Key points

- What is the lumped-parameter assumption upon which all the circuit analysis methods introduced in this course are founded?
- What is the passive sign convention that is used in unambiguously defining the sign of each formula in circuit analysis?