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Fundamental Requirements of Photodetectors

High Sensitivity

Short Response Time
Large Quantum Efficiency
Low Power Consumption

Ming-Chang Lee, Integrated Photonic Devices




Photon Electron Interaction
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* Interband absorption = electron and hole pairs
(photodetector) /v > E,

* Intraband absorption > free carrier scattering (metal)
hv<E,

Ming-Chang Lee, Integrated Photonic Devices

Fundamentals of Depletion Layer Photodiodes

Minority Carrier
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P*-n (high-low) Junction Diodes

To minimize series resistance and maximum depletion layer, usually

one region is low doped. Photo Flux
W is dependent on Va
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Photon Penetration in P*-n Photodiodes

To maximize the quantum
efficiency, it is desirable to
make the product oW and ol
as large as possible

(1). Drifted Current

Contribution Term ;1 — e_aW

(2). Diffused Current

Penetrating Photons
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However, a is wavelength-dependent
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Waveguide Depletion Layer Photodiodes

If the basic depletion layer photodiode is incorporated into a waveguide
structure, most of photons are guided in the depletion layer.
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n - substrate Bias at the p-region
until the depletion
layer is close to the
waveguide thickness

. .

Thus, the photocurrent is given by J =g¢,(1-¢™")
L can be made as long as possible to have aL >>1. — n, ~100%

High speed due to small capacitance and operation in depletion region
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Free Carrier Absorption and Scattering Loss

If the free carrier absorption and the scattering loss are comparable to the
interband absorption, photons will be annihilated without generating
electron-hole pairs.

Consider the photon flux decaying along propagation (x):

x

p(x)=ge ™ where a=a,+a,t+a
The hole-electron pair generation rate G(x) is given by
G(x) = appe™

Thus, the photocurrent density is given by

L a —(ap+apc+a,
J =q_|.0 G(x)dX ey J = qp, —% _ (1-e (@ +arc ‘)L)
Ay + Uy + O

+ The effect of additional losses due to scattering and free-carrier
absorption reduce the quantum efficiency
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Schottky-Barrier Photodiodes

metal ' n-Semiconductor
a Zero Bias b Reverse Bias (Va) '

* The p-n junction is replaced by metal-semiconductor contact.

* The barrier height ¢g depends on the particular metal-
semiconductor combination.

+ Eliminate strong absorption of high energy photons in the p+
layer (conventional depletion layer photodiodes)

+ [Easy fabrication
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Avalanche Photodiodes

+ If the device is biased precisely at the point of avalanche
breakdown, carriers are multiplied due to impact ionization.

A ]}
Avalanche Breakdown T Photomultiplication Factor: Mp,, = Ilh
ph0
I +1
/ Ido Multiplication Factor: A/ = 2~
Id Iph v IphO + Ido
A functional form of photomultiplication factor

1, : Dark Current
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Biased voltage Breakdown voltage

I, Photocurrent
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Avalanche Photodiodes

Avalanche Breakdown 4 If 1,h0 >> I, according to Ohm’s law
1
M=——
/ Ig vV IR,
0 1_(«17)
where [=1,+1,

1 1, : Dark Current R : Series Resistance
1, : Photocurrent IfIR<<V, V,~V,and |, 1;>> Iy, Lo
v,
M=M= b
"7 AInl LR

phO

. . . w Material Property
+ High gain (104) and high frequency (35GHz)

* However, not every p-n junction can be operated in the
avalanche multiplication mode 2> defect sensitive
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p-i-n Photodiodes
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The whole intrinsic layer (carrier-balanced) covers the depletion
layer

W is large and independent of dopant concentration
» Low junction capacitance > reduce the RC time
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Metal-Semiconductor-Metal Photodiodes

Opaque contact
+ - + - + - + + / \ -
— . . SN NN NN e
Active Layer
SI - Substrate

* Electrons and holes are swept to the cathode and
anode by fringe field.

* The capacitance is relatively small due to narrow
fingers

+ Transparent electrodes are preferred (Cadmium Tin
Oxide)
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Hybrid Structure

How to monolithically integrate a low-loss waveguide and a high-
absorption waveguide detector?

glass
n=1.57_ -V,

Si02 - j

n=1.46

p*(B diffused)
n-silicon

* Hybrid structure
— Waveguide --- glass
— Detector --- p+ silicon
+ The waveguide loss is 0.8dB/cm (632.8 nm wavelength)
* However, the light enters the diode in the direction normal to
junction plane.
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Heteroepitaxial Growth

A=1.06um Vo Pt Schottky
nGaAs _p- ! Barrier Contact
waveguide

n+- GaAs ~InGaAs

*

The most popular method of monolithically integrating a waveguide
and a detector is to use heteroepitaxial growth

— Narrow bandgap --- detector (InGaAs)

— Wide bandgap --- waveguide (GaAs)
The absorbed wavelength ranges from 0.9 pm to 3.5 um by
controlling the x 7n,Ga,_,,4s
A thick oxide layer was pattern as a mask and GaAs was etched.
Then InGaAs is epitaxially grown on the etched pits.

The stress at the interface may play a role in reducing quantum
efficiency.
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Dependency of absorption edge wavelength
and lattice constant
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A planar embedded GalnAs p-i-n photodiode
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Integrated GalnAs Photodiodes and InP

waveguides
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Proton-Bombarded Detectors
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* Proton Bombardment creates traps of carriers. These carriers
will be excited out by photon illumination

* The implanted protons also create various defect modes within
the bandgap. Therefore, it reduces the absorption edge
wavelength
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Proton-Bombarded Waveguide Detectors

X{pm)
SCHOTTKY BARRIER
phasn CONTACT P
3
i g EPITAXIAL WAVEGUIDE \ :
o n=10'%cm? (PRIOR TO
== IMPLANTATION) AN !
I DETECTOR / "DENSITY OF
¢ VOLUME . IMPLANTATION
CAUSED DAMAGE
SUBSTRATE
% n= 1.25x10%cm®

z s \OHMIC
CONTACT

Y

+ A 3.5 um thick n-type epitaxial layer (n~1016/cm3 ) was grown on a
degenerately doped n-type substrate (n~10'8/cms3).

* Proton bombardment in the detector region.

» A partial annealing of damage at 500°C for 30 min was performed to
reduce the scattering loss (non-interband absorption)
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Optical Bistable Devices by Proton-
Bombardment Detectors
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+ A directional coupler is controlled by the electrodes.

* The optical detector is employed in one arm of the output
waveguides.

» The photocurrent output is amplified by an external circuit and

fed back to the control electrodes.
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Integrated-Optic Light Emitting and Detecting
Diodes (LEAD)

+ -
Emitter X‘Detector

* By electro-absorption, the absorption edge is shifted to long
wavelength.

+ The absorption is controlled by reverse bias so that the
emitters and detectors can be made in the same semiconductor
material.

— Emitter > forward bias
— Detector = reverse bias
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Distributed Feedback Light Emitting and
Detecting Diodes

Photo delector IE Amplifier)
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» Lasers, detectors, amplifiers and switches are
integrated monolithically.
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Factor Limiting Performance of Integrated
Detectors

(1) High Frequency Cutoff

* RC time due to series resistance and junction capacitance ---
dramatically reduced in waveguide photodiode

» Carrier drift time across the depletion layer (eg, in GaAs, the
scattering limited velocity is 1x107 cm/s in electric field greater
than 2x104 V/icm.)

+ Carrier diffusion time (outside the depletion layer)
+ Carrier life time and diffusion length

» Carrier trapping and detrapping time

+ Capacitance and inductance of the package

(2) Linearity

+ At low power levels, the photocurrent is proportional to the
input power. However, at high power levels, the electric field is
reduced due to space-charge effects, resulting in low drift
velocity. The generated carriers are also easily recombined.
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Factor Limiting Performance of Integrated
Detectors

(3) Noise

+ Thermal Noise
— Arising in bulk resistances of device
+ Shot Noise

— Non-uniformities of current flow such as carrier generation and
recombination

+ Background Noise
— Photons from background (not part of optical signal).

The signal-to-noise ratio in a depletion layer photodiode due to thermal
and shot noise is given by

2
D = %MZ%A(HMTT%)*
77, : quantum efficiency @, : photon flux R : diode bulk resistance
B : bandwidth 4 :input area I :dark current
M : modulation index K : Boltzmann’s constant C : capacitance
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Photoconductive detectors

Electrodes

» An electron may be raised from the valence band to the conduction band in
a semiconductor by absorbing a photon of frequency v

* As long as the electron remains in the conduction band, the conductivity of
the semiconductor will be increased. This is the phenomenon of
photoconductivity.

Incident radiation
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Absorption Coefficient of Materials
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Photoconductive detectors

Not all of this incident energy will be available to generate electrons within
the semiconductor: some will be reflected and some will pass trough. The

reflection coefficient is given by r
=
r=| ——
n+l1
The irradiance just inside the surface
1(0)=1,(1-7r)
The irradiance at a point a distance x into the semiconductor

1(x) =1(0)exp(—axx) Where ¢ is absorption coefficient
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Photoconductive detectors

The fraction of the incident irradiance which is actually absorbed in
the semiconductor can thus be written

n=010=r) 1, where 7., =1—exp(-aD)
The total number of electron-hole pairs generated within the slab
per second is

_ WL nl,
& hvWLD hvD

The recombination rate r, of excess carriers depends on the densities of
the excess carrier population An,Ap

r.=An/t,=Aplr, 7.:minority carrier lifetime
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Photoconductive detectors

In equilibrium the recombination rate must equal the generation rate
An=Ap=r,,
The conductivity of a semiconductor material can be written by
o =neu, + pep,

Hence under illumination the dark conductivity will increase by an
amount

Ao = Anep, +Apept, =r,z,e(u, + 1)

The application of a voltage V across the electrodes will result in a
photoinduced current Ai

. WD
Ai = @Acﬂ/ or Ai= Trgrce(ﬂe + )V
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Vidicons and plumbicons

! ) ) : Transparent
Focus and deflection coils Photoconductive conductive
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\ /" film
S \ A

/ / Glass faceplate
/
="""/_I:|_r—"7/// :
/ __x" I! 3

— - . L
Cathode M o 2 il
V) — —— ——{ Voltage signal output
=0V
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Scanning electron beam

The vidicon is a generic name for a family of devices that relies on the

phenomenon of photoconductivity to convert an optical image into an
electrical signal.
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Principle of Image Conversion (Vidicon)
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+ The photoconductive target is like a leaky capacitor
* One of the problems is its relatively high dark current

* A device which exhibits very low dark currents is the plumbicon,
consisting of a thin film p-i-n structure
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Charge-coupled device (CCD)

+V Transparent conducting
layer (gate)
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Three-phase scheme

* The gate can be made from polysilicon, which is reasonably
transparent between 400nm to 1100nm.
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Charge-coupled device (CCD)
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Basic arrangement of the detector array and transport register in a linear CCD optical sensing

FIG. 7.47
array. The directions of charge transport are indicated by arrows and shading indicates those areas that are

shielded from incident radiation.

- Little charges may lost on the way of transfer. The fraction of the total
charge which is successfully moved in each transfer is called the charge

transfer efficiency 7

(7.)"  m: transfer times
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