

Factor Limiting Performance of Integrated Detectors

(1) High Frequency Cutoff

- RC time due to series resistance and junction capacitance --- dramatically reduced in waveguide photodiode
- Carrier drift time across the depletion layer (eg, in GaAs, the scattering limited velocity is 1×10⁷ cm/s in electric field greater than 2×10⁴ V/cm.)
- · Carrier diffusion time (outside the depletion layer)
- Carrier life time and diffusion length
- Carrier trapping and detrapping time
- · Capacitance and inductance of the package

(2) Linearity

At low power levels, the photocurrent is proportional to the input power. However, at high power levels, the electric field is reduced due to space-charge effects, resulting in low drift velocity. The generated carriers are also easily recombined.
Ming-Chang Lee, Integrated Photonic Devices

Factor Limiting Performance of Integrated Detectors

(3) Noise

- Thermal Noise
 - Arising in bulk resistances of device
- Shot Noise
 - Non-uniformities of current flow such as carrier generation and recombination
- Background Noise
 - Photons from background (not part of optical signal).

The signal-to-noise ratio in a depletion layer photodiode due to thermal and shot noise is given by

$(\frac{S}{N})_{powe}$	$_{r} = \frac{\eta_{q}}{4B} M^{2} \varphi_{0} A \left(1 + \frac{2KT}{q} \frac{(\omega RC)^{2}}{RI_{s}}\right)$	− ¹
$\eta_{\scriptscriptstyle q}$: quantum efficiency	$arphi_0$: photon flux	R: diode bulk resistance
B : bandwidth	A : input area	I_s : dark current
M: modulation index	K: Boltzmann's constant	C : capacitance
Ming-Chang Lee, Integrated Photonic Devices		

Photoconductive detectors

Not all of this incident energy will be available to generate electrons within the semiconductor: some will be reflected and some will pass trough. The reflection coefficient is given by r

$$r = \left(\frac{n-1}{n+1}\right)^2$$

The irradiance just inside the surface

$$I(0) = I_0(1-r)$$

The irradiance at a point a distance x into the semiconductor

 $I(x) = I(0) \exp(-\alpha x)$ Where α is absorption coefficient

Ming-Chang Lee, Integrated Photonic Devices

Photoconductive detectors The fraction of the incident irradiance which is actually absorbed in the semiconductor can thus be written $\eta = (1-r) \cdot \eta_{abs}$ where $\eta_{abs} = 1 - \exp(-\alpha D)$ The total number of electron-hole pairs generated within the slab per second is $r_g = \frac{\eta I_0 WL}{h v WLD} = \frac{\eta I_0}{h v D}$ The recombination rate r, of excess carriers depends on the densities of the excess carrier population $\Delta n, \Delta p$ $r_r = \Delta n / \tau_c = \Delta p / \tau_c$ τ_c :minority carrier lifetime

Photoconductive detectors

In equilibrium the recombination rate must equal the generation rate

 $\Delta n = \Delta p = r_g \tau_c$

The conductivity of a semiconductor material can be written by

 $\sigma = ne\mu_e + pe\mu_h$

Hence under illumination the dark conductivity will increase by an amount

 $\Delta \sigma = \Delta n e \mu_e + \Delta p e \mu_h = r_e \tau_c e(\mu_e + \mu_h)$

The application of a voltage V across the electrodes will result in a photoinduced current $\Delta \mathbf{i}$

$$\Delta i = \frac{WD}{L} \Delta \sigma V \qquad \text{or} \qquad \Delta i = \frac{WD}{L} r_g \tau_c e(\mu_e + \mu_h) V$$

