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Integrated Modulator I

Class: Integrated Photonic Devices
Time: Fri. 8:00am ~ 11:00am. 

Classroom: 資電206
Lecturer: Prof. 李明昌(Ming-Chang Lee)
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Basic Operation Characteristic of Modulators
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Basic Operation Characteristic of Modulators
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If the modulation of intensity is related to phase modulation such as MZI, the 
modulation depth

ϕ∆ is the phase change

If the modulation is on frequency, the modulation depth is

0f : optical carrier frequency

mf : shifted optical frequency

(2) Bandwidth

T: minimal switching time

f∆ : bandwidth (3dB)
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Guided-Wave Mach-Zehnder Interferometer
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It is not linear modulation!
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Basic Operation Characteristic of Modulators

(3) Insertion Loss (Optical)
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0I : the intensity without operation

tI : Input light intensity

(4) Power Consumption (Electrical)

P
f∆

Signal Power (Electrical)

Bandwidth

In most cases of modulators, the required drive power increases with modulation frequency.

Most of power is consumed during transient time

mI : the transmitted intensity with
maximum signal
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Basic Operation Characteristic of Modulators

(5) Isolation (Crosstalk for switch)
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Linear Anisotropic Medium

Anisotropic Materials

ε : tensor
Force

Displacement
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Linear Anisotropic Medium
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In a linear anisotropic medium, the electric displacement can be 
expressed in a matrix form

If the material is nonmagnetic and lossless, the matrix ε is symmetric 
and can be diagonalized with real eigenvalues.  And the eigenvectors are 
also real. Therefore, 

( )D ε E= i
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and

The diagonalization is correspondent to transferring the initial coordinate 
system to the principle coordinate system
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Linear Anisotropic Medium

The energy stored in the nonmagnetic, lossless medium is 
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If E and D are presented according to the principle coordinate system
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A general expression of index ellipsoid (not in the principle coordinate 
system but in crystal symmetry coordinate) is 

(Index Ellipsoid)
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In fact
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Linear Anisotropic Medium
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Linear Anisotropic Medium
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an : short axis of ellipse 

bn : long axis of ellipse 
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• The wave numbers of two orthogonal displacement vectors are not the same

• Optical axis: How to choose the direction of k such that a bn n= (circular cross section)

Uniaxial: single optical axis  
biaxial: two optical axes

principle axis 
(no bifringe)
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Wavefront Propagation Direction vs. Beam 
Direction (not along optical axis)

k H Dω× = −
G JJG JG

0k E Hωµ× =
G JG JJG

D Eε= ⋅
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Wavefront Propagation Direction vs. Beam 
Direction (not along optical axis)
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Index, k-vector and s-vector for a normal 
incident 

• step 1: Draw the index ellipsoid and label principle axes 
and indices

• step 2: Draw crystal cut
• step 3: Draw the electric displacement plane 

(perpendicular to the incident k vector)
• step 4: Determine two orthogonal D vectors (long axis 

and short axis) and the correspondent indices
• step 5: Decompose the beam into these two components
• step 6: The transmitted angles of these two s vectors are 

determined by the dielectric tensor 
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Propagation along a Principle Axis

When the wave propagates along one of the principle axes, say z. Then 
the field can be decomposed into two normal modes
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ω
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• If it is originally linearly polarized along one of the principle 
axes, it remains linearly polarized in the same direction

• If it is originally linearly polarized at an angle              with 
respect to the x-axis, it polarization state varies periodically 
along z with a period 
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Electro-Optic Effects

• The Pockels effect does not exist in a material with inversion 
symmetry, which is called a centrosymmetric material. 

• The Kerr effect exists in all materials

(1) (1)
0 0 0 0 0

,
( ) ( ) k k kl k l

k k l
E E r E s E Eα α α α α αη η η η= + ∆ = + + +∑ ∑ "

The electro-optic effects are traditionally defined in terms of the 
changes in the elements of the relative impermeability tensor η

Pockels Effect Kerr Effect

krα : Pockels coefficient (linear electro-optic)

klsα : Kerr coefficient (quadratic electro-optic)
where
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Pockels Effects

• For a noncentrosymmetric material, the number of nonvanishing
independent elements in its rαk matrix is generally reduced by its 
symmetry

0 0( ) k k
k

E r Eα αη∆ =∑

For the Pockels effect, 

Which can be written explicitly in the following matrix form
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6 61 62 63
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   
∆      
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Matrix Form of Pockels Coefficients

III-V

LiNb3
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Electro-Optic Effects

• With electro-optic effects, not only the refractive index but also 
the principle axes are changed

The original diagonalized dielectric tensors therefore changed due to 
the electro-optic effects
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Electro-Optics

Diagonalized
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LiNbO3 (3m) Electro-Optics

• The principle axes are not rotated. The crystal remains uniaxial
with the same optical axis

• The indices of refraction are changed
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KDP (KH2PO4) 
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The crystal symmetry of KDP is 42m

Now we consider the case when the field is applied along the z-axis:

0 0 0x yE E= = 0 0zE ≠and
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KDP (KH2PO4)

In dielectric matrix representation,
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GaAs ( )43m

For the III-V semiconductor with           symmetry, since  ( )43m

0x y zn n n n= = =

The only nonvanishing Pockels coefficients are 

41 52 63γ γ γ= =

We therefore consider only the case when the field is applied 
along the z-axis 

0 0 0x yE E= = and 0 0zE ≠

Then we only have  6 41 0 zEη γ∆ =

The index ellipsoid becomes  
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   ∆  =     ∆         ∆
   
∆      
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GaAs ( )43m

The dielectric permittivity tensor becomes  

2 4
0 0 41 0

4 2
0 0 41 0 0
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0
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n n E
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This results in the following new principle axes  
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3
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' 0 41 02x z
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3
0

' 0 41 02y z
nn n Eγ≈ +

and

and ' 0zn n=

Isotropic  Biaxial  (Anisotropic)
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Single-Waveguide EO Modulators

• It can operates as either phase modulator, amplitude modulator, 
polarization modulator or optical switch

• Various materials such as LiNbO3, GaP, LiTaO3 can be used.
• The metal contact forms a Schottky diode in the interface (for 

applying electric field  

Ming-Chang Lee, Integrated Photonic Devices

Schottky Barrier

Fermi Level

Like a diode
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Single-Waveguide EO Modulators

23 2 3 chemical CCR EOn n n n n n∆ = − = ∆ + ∆ + ∆

(1) Phase Modulation
Material Index Contrast

Concentration Reduction (if any)

Electro-Optic Effect 
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Single-Waveguide EO Modulators

2 2

0 0

2 2

1 9
32 32chemical CCR

g g

n n
n t n t

λ λ   
< ∆ + ∆ <      

   

Without Bias

The cut-off condition for single 
mode waveguide:

When a voltage V is applied with reversed bias on the Schottky diode, 
the electric fields are built within the waveguide. 

3
2 41 2EO

g

Vn n r
t

∆ = (TE-polarized in y-direction)

(There is no field-induced index change in TM waves)
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Single-Waveguide EO Modulators

0

2
n

k
βλβ
π

∆∆∆ = =

3
2 41

0
EO

g

VLL n r
t

πϕ β
λ

∆ = ∆ =

Therefore, the index change due to 
electric fields becomes

(TE-polarized in y-direction)

The phase change produced by the electric field is given by

(2) Polarization Modulation

TE

TM 3
2 41 2TE

g

Vn n r
t

∆ =

0TMn∆ =
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Single-Waveguide EO Modulators
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= ∆ +

  = + 
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(3) Intensity Modulation
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0
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1
32chemical CCR
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n n n
n t

λ 
∆ = ∆ + ∆ =   

 

• The index contrast is designed just around the cut-off condition 
of fundamental mode without bias. 

0EOn∆ >

0EOn∆ <

Transmitted

Radiated

� �

2
x y+

� �

2
x y− +
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Single-Waveguide EA Modulators

• Franz-Keldysh effect or Quantum Confirmed Stark effect (QCSE)

(4) Electro-Absorption Modulation 

Shift
Franz-Keldysh

(A)(B)

• The band edge shifts to long 
wavelength with electric bias

• Energy band bends significantly 
near surface

surface
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Single-Waveguide EA Modulators

* 1/3 2 /33 ( ) ( )
2

E m q ψ−∆ = =

The effective change in bandgap energy ∆E is given by

*m : effective mass ψ : applied field

Shallow p-n junction

3 2N N>>

3 2N N>> Reduce the resistance in the substrate and 
increase the depletion area in the waveguide 
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Dual-Channel Waveguide EO Modulators

0 0

1 1

( ) (cos sin )exp ( )
2 2
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2
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2
2

1 2
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2

( ) sin ( )

gzP z gz
g

P z gz
g

β

κ

 ∆= −


 =

Recall

0 (0) 1A = 1(0) 0A =and

where 0 1β β β∆ = − and
2

2 2

2
g βκ ∆ ≡ + 

 
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Dual-Channel Waveguide EO Modulators

when 0β∆ = , 100% power is transferred if 

2
L mπκ π= + 0,1,2,m = …

When a modulating voltage is applied 
to produce a ∆β, the coupling could be 
completely cancelled if 

gL mπ π= + 0,1,2,m = …

(a)

(b)

Combine (a) and (b), it can be shown that the value of ∆β required 
for 100% modulation is given by

( ) 3Lβ π∆ =

The change in effective index needed for 100% modulation

0

3
gn k L

π∆ =
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Dual-Channel Waveguide EO Modulators

Three-electrode Dual-Channel Waveguide 
Modulators

• Fabricated in GaAs
• A pair of strip-loaded 

waveguides
• Extinction Ratio: 13dB
• Applied Voltage: 35V
• 7-ns rise time
• The power-bandwidth 

ratio: 180mW/MHz

Ming-Chang Lee, Integrated Photonic Devices

Dual-Channel Waveguide EO Modulators

β∆ β−∆

Split-Electrode Dual-Channel Waveguide Modulators

• 100% power transfer is insensitive to the waveguide length. 
• The on and off states are controlled by ∆β. 
• It allows a maximum extinction ratio and a minimum crosstalk.
• The waveguide length  

2
L lπ

κ
> =

L

on
off

on
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Dual-Channel Waveguide EO Modulators

Polarization Insensitive Modulators 

Between-Guide Electrodes

Over-Guide Electrodes

• Stepped ∆β reversal electrodes are both for TE and TM 
polarization

Ming-Chang Lee, Integrated Photonic Devices

Mach-Zehnder Type Electro-Optic Modulators

Single Mode Waveguide

• Ideally, the path lengths and guide characteristics are identical. 
• The Y-branch is a perfect 3dB splitter.
• The input and output waveguides are single mode.
• The optical wave radiates as the phase difference is equal to π. 
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Bragg-Effect EO Modulators

0sin
2B

gn
λθ =
Λ

2
02 Lπλ Λ�

The Bragg angle θB is given by

0
gn k

β=

:Λ Grating Space

(effective index)

Suppose

• Index grating is patterned by a interlace, com-like, pair of 
electrodes 

• The index difference is modulated by electro-optic effects
• The input angle of guided wave is aligned to the Bragg angle.
• The output wave is diffracted by 2θB angle

(thick grating)
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Bragg-Effect EO Modulators

• Demonstrated in ZnO, LiTaO3, …
• The extinction ratio can be 24.7dB

2
B L

θ Λ∆ =

2sindiffracted

transmitted

I
VB

I
=

If the input angle is deviated from 
the Bragg angle by  ∆θB, the 
diffracted efficiency is reduced.

The 50%-reduction deviation 
angle is

The intensity of light diffraction is dependent on the applied voltage, which is given by

B: constant dependent on waveguide 
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EO Reflection Modulators
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For a given input angle θi, the applied voltage should be 

• High speed (6GHz) due to low device capacitance

Ming-Chang Lee, Integrated Photonic Devices

Figure of Merit --- P/∆f

In EO modulators, the drive power is usually consumed during state transition 

V

R

C

I The average external power Pe is defined 
by operating the modulator at a maximum 
frequency equal to its bandwidth (∆f). 

( )eP f= ∆ Φ

Where Φ is the energy supplied from an 
external source to switch the modulator 
on or off

21
2 aE dvεΦ = ∫ aE : the peak amplitude of 

the applied field

Suppose all the electric fields are uniformly distributed in the
modulator volume, 

2

2
aWtLEεΦ = W: width t: thickness L: length

volume

21
2
CVΦ =
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Figure of Merit --- P/∆f

Therefore, the external drive power is 
2( )

2
a

e
f WtLEP ε∆=

For the specific case of an EO modulator formed in GaAs, the 
resulting change in index of refraction are related by 

3
2 41

2
a

nE
n r

∆=

Therefore,

2
6 2
2 41

2( )
e

f WtLP n
n r

ε∆= ∆

Suppose for a dual-channel modulator, it has shown that 

0

3
gn k L

π∆ =

(a)

(b)

Ming-Chang Lee, Integrated Photonic Devices

Comparison of  P/∆f

2
0

6 2
2 41

3
2

eP Wt
f n r L

ε λ=
∆

Bulk EO Modulator Planar Waveguide 
EO Modulator

Channel EO Modulator

Combine (a) and (b),

0.148 /eP mW MHz
f

≈
∆

1.48 /eP mW MHz
f

≈
∆148 1480 /eP mW MHz

f
≈

∆
∼
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Travelling Wave Electrode Configuration

Phase Modulator Mach-Zehnder Modulator

• It operates at high frequency (microwave).
• The signal bandwidth is limited by the difference of 

microwave phase velocity (vm) and optical wave 
phase velocity (vp). 

2m
p

L
v

πω >

L

2m
p m

L L
v v

πω− <

Ming-Chang Lee, Integrated Photonic Devices

Asymmetric MZI modulator

Silicon-based Electro-optic Device

• Free carrier plasma dispersion effect
– Refractive index is changed by the density of free 

carrier
– Ridge waveguide (Ridge part : poly-silicon, slab  

part : single crystal)
– Free carrier is accumulated around the gate oxide
– MOS Process

“A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor”, 
Nature ’03, Ansheng Liu, Intel
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Silicon-based Electro-optic Device

• Free Carrier Injection Effect
– p-i-n junction around the microcavity
– Refractive index in microcavity is changed
– 2 distributed Bragg reflectors (DBR) are on 

the two sides of microcavity

Waveguide Cross Section 1D photonic crystal cavity 
intensity modulator

“Electrooptic Modulation of Silicon-on-insulator Submicron-Size Waveguide device”, J. of 
Lightwave Tech., 2003

C. Angulo Barrios (Cornell University)


