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Waveguide Loss

Class: Integrated Photonic Devices
Time: Fri. 8:00am ~ 11:00am. 

Classroom: 資電206
Lecturer: Prof. 李明昌(Ming-Chang Lee)
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Optical Loss in Waveguides

• Scattering Loss
– Due to surface roughness

• Absorption Loss
– Due to photons annihilated in materials

• Radiation Loss 
– Due to waveguide bending

Three major losses in waveguide
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Scattering Loss

• Volume Scattering

• Surface Scattering (Dominant)

void
Crystalline Defect contamination
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Surface Scattering Loss (Tien’s Model)

• Each reflection induce scattering light

interface
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Surface Scattering Loss

To quantitatively describe the optical loss, the exponential attenuation 
coefficient is generally used. In this case, the intensity (power per unit 
length) decays along the waveguide.
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Scattering Loss Analysis by Tien’s Model

Consider a planar waveguide with TE polarization
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Substrate, n2

Waveguide, n1

The power carried by the incident beam hit on the unit length (1 cm)
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Scattering Loss Analysis by Tien’s Model

Consider the two film surface
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Scattering 

The power attenuation per unit length
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Surface Scattering Loss

• High order modes have more reflections from the 
surface

Low-order mode

High-order mode

mg
R t

LN
θcot2

= Where m is mode no.
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Mode Effect

The loss for the m=3 
waveguide mode is as much 
as 14 times that of the m = 0 
waveguide mode.

Ta2O5

λ= 632.8 nm

Surface Scattering

Volume absorption

1: ( / ) 4.3 dB cm cmα −=
Tien, 1971
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Sidewall Scattering Loss

• Sidewall roughness is created during etching process
• The propagation loss is highly related to the roughness for a 

small-dimension waveguide

Rough Sidewall Smooth Sidewall Measured Result

Tsuchizawa T. JSTQE 2005 
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Optical Loss due to Surface Roughness  

• Single mode 
waveguide

• Surface roughness 
required to achieve 
low loss

w× t < 0.18 µm2
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Optical Field
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Absorption Loss

• Interband absorption electron and hole pairs 
(photodetector)

• Intraband absorption free carrier scattering (metal)

Valence Band

Conduction Band

gh Eν >

gh Eν <
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Free Carrier Absorption (Drude Model)

E

electrons

)exp()exp( 002

2

tjeEtjqE
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dxmg
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xdm ωω −==+

Not harmonic oscillator!

g : damping coefficient due to scattering

m : mass of carrier
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Free Carrier EffectDielectric polarization
(Dipole Moment) (electron or hole) 
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Free Carrier Absorption
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What is g?

At steady state, electron move as a constant speed.

eE
dt
dxmg =

The definition of mobility µ

E
dt
dx µ=

(1)

(2)

µm
eg =

That is, d2x/dt2 = 0
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Mobility of Semiconductor
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Free Carrier Absorption
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• Free carrier absorption is proportional to the carrier 
density

• The refractive index is also affected by the free 
carriers

( )gω >> For optical wavelength
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Free Carrier Absorption

17 34.6 10 cm−×

18 31.4 10 cm−×

18 32.5 10 cm−×

19 31.68 10 cm−×

p-Si, 300k

Hole 
Concentration

16 3(1) 1.4 10 cm−× 16 3(2) 8 10 cm−× 17 3(3) 1.7 10 cm−×
17 3(4) 3.2 10 cm−× 18 3(5) 6.1 10 cm−× 19 3(6) 1 10 cm−×

n-Si, 300k
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Resistivity vs. Impurity Concentration

Sze and Irvin

Impurity Concentration (cm-3)
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Temperature-Dependent Free Carrier Absorption 
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Free Carrier Absorption on Proton 
Bombardment Waveguide

Proton

GaAs or GaP

GaAs or GaP (Heavily Doped) 

* 2 2
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2 1 2 2( )
4 g

m cN N
t e

ε π
− ≥

0 1.3 mλ µ=

0 10.6 mλ µ=

The major loss comes 
from the evanescent wave 
penetrating in substrate 

tg

d=tg
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Surface Plasmons

• The interaction of metals with electromagnetic radiation is largely 
dictated by the free electrons in the metal. 

• Most metals possess a negative dielectric constant at optical 
frequency

• Only the surface can support optical wave propagation (why?)
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Optical Properties of Nobel Metals
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Measure dielectric function of gold

Combine dipole 
dispersion and free-
carrier dispersion
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Surface Plasmons at plane interface

• EM wave and surface charge are oscillating.
• The fields in the perpendicular direction decay 

exponentially.
• The momentum of SP is larger than the free space 

photon. 

W.L. Banes, nature review article
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Surface Plasmons at plane interface

Metal

Dielectric

1 1,ε µ

2 2,ε µ

2

2E( , ) ( , )E( , ) 0r r r
c
ωω ε ω ω∇×∇× − =

Mathematically, the solution has to satisfy the wave equation

where 1( , ) ( )rε ω ε ω= z < 0 2( , ) ( )rε ω ε ω= z > 0 
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Surface Plasmons at plane interface

TE wave or s-wave can not be a solution of surface plasmonic wave (H can not 
satisfy the boundary condition)

Consider a TM wave or p-wave,

,
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1, 2i =where

Since the x-direction wave vector is conserved or Snell’s law

2 2 2
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c
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Since both spaces are source-free; that is, D = 0∇ ⋅

, , , 0x i x i z i zk E k E+ = (a)
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Surface Plasmons at plane interface

Consider the boundary condition, 
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Combine (a) and (b), since the electric fields are not trivial solutions, the 
determinant of respective matrix has to be zero; then 
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Surface Plasmons at plane interface

Since the surface plasmonic mode are evanescent on the two sides of interface

xk should be real ,i zk should be imaginary and

Therefore

1 2

1 2

( ) ( ) 0
( ) ( ) 0

ε ω ε ω
ε ω ε ω

⋅ <
+ <

The dielectric functions must be negative with an absolute value exceeding 
that of the other.

Nobel metals such as gold and silver, have a large negative real part of 
the dielectric constant along with small imaginary part
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Properties of surface plasmonic waves

Consider the metal dielectric
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Excitation of Surface Plasmonic Wave

In this case, 
SPP can not 
be directly 
coupled from 
air
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Radiation Loss

0
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The angular phase velocity 
should be the same. 

Radiation
rX
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What is Attenuation Coefficient (α)?
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What is α due to Radiation Loss?

radP

rX

Total Power

Suppose the field
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What is Attenuation Coefficient (α)?
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The propagation length of unguided mode (analogy to a truncated waveguide)
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What is α due to Radiation Loss?

• The attenuation coefficient decreases with the 
bending radius

• The attenuation coefficient decrease with the index 
contrast
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What is Attenuation Coefficient (α)?
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Other Losses --- Intersection
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Waveguide Loss Measurement

• How to distinguish the loss?
1. Waveguide loss or coupling loss?
2. Waveguide loss of fundamental mode or 

high-order modes?
3. Scattering loss, absorption loss, or 

radiation loss?
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End-Fire Coupling Loss Measurement 

1 2

2 1

ln( / )P P
Z Z

α =
−

for 2 1Z Z>

• Advantage
– Simple and direct

• Disadvantage
– Alignment sensitive
– End face condition should be 

consistent
– Can’t distinguish the loss 

associated with different 
mode number
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Prism-Coupled Loss Measurement

m = 0

m = 1

m = 0

m = 1

• Advantage
– Can measure the loss from different modes
– Alignment insensitive
– End face quality is not required

• Disadvantage
– Less accurate (It is difficult to reproduce the coupling loss)
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Fabry-Perot
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Fabry-Perot Loss Measurement

max min
2

max min

11 1ln
1

I I
L I I

α
γ

 −
= −   + 

2γ : Reflectivity

• Advantage
– Alignment insensitive

• Disadvantage
– End face condition should 

be consistent
– Only for single mode 

waveguide
– Light source should be 

single frequency

L



23

Ming-Chang Lee, Integrated Photonic Devices

Scattering Loss Measurement

Prism Coupler
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Scattering loss Measurement by Image Analysis

McNab S.J.


