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Optical Loss in Waveguides

Three major losses in waveguide

» Scattering Loss
— Due to surface roughness

* Absorption Loss
— Due to photons annihilated in materials

* Radiation Loss
— Due to waveguide bending
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Scattering Loss

* Volume Scattering
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Surface Scattering Loss (Tien’s Model)

« Each reflection induce scattering light

interface

4o :
Rayleigh Criterion £ = BGXP[—(TCOS 6,)’]
o : variance of surface roughness

m: mode number
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Surface Scattering Loss

To quantitatively describe the optical loss, the exponential attenuation
coefficient is generally used. In this case, the intensity (power per unit
length) decays along the waveguide.

1(z) =1, exp(~az) 1, is the initial intensity atz= 0
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Scattering Loss Analysis by Tien’s Model

Consider a planar waveguide with TE polarization

lcm Cover cladding, n;

Waveguide, n,

Substrate, n,
The power carried by the incident beam hit on the unit length (1 cm)

c '
—mE cosf,  E, is the field amplitude
871' y y

According to the Rayleigh criterion, the reflected beam from the upper

film surface o
o : variation of surface
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87 A

- 7
~

Rayleigh criterion
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Scattering Loss Analysis by Tien’s Model

Consider the two film surface

4 4 1/2
7‘7 —_—> 7(0-13+O_12)

The power lost by surface scattering per unit length is
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Scattering

The power attenuation per unit length

_ 2100S39m’ 1
2 sinHm' t,+17y,)+1/ys)
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Surface Scattering Loss

Low-order mode ———————=>pp
n High-order mode =%
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R Where m is mode no.

* High order modes have more reflections from the
surface
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ATTENUATION cm™

Mode Effect

m=3
28 : Surface Scattering 1'2 The loss for the m=3
waveguide mode is as much
24 g LIRS as 14 times that of the m =0
waveguide mode.
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Tien, 1971
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Sidewall Scattering Loss

Rough Sidewall Smooth Sidewall Measured Result

7.8dBlom (TE) .-
300x300nm .- %

e 2.8 dB/cm (TE)
400 x 200 nm

Insertion loss (dB)
<

13 dB/em 0 R
0 0.5 1 15
Waveguide length (cm)

60 dB/cm

2

Tsuchizawa T. JSTQE 2005

» Sidewall roughness is created during etching process

+ The propagation loss is highly related to the roughness for a
small-dimension waveguide

Ming-Chang Lee, Integrated Photonic Devices

Optical Loss due to Surface Roughness

Waveguide Loss (dB/cm)

t=0.25um TM-like Mode
20 -
Surface
Roughness t I
15; +— w—>
Optical Field
10 + Single mode
waveguide
5 wx t<0.18 pm?
1
nm : + Surface roughness
0 : ; required to achieve
04 0.6 0.8 1 |ow |oss
Waveguide Width (um) 8..<1nm

Wavelength : 1550nm
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Absorption Loss

e 1,00 T

Conduction Band

Valence Band l
Interband
absorption Intraband absorption
hv >Eg =Ec -Ey (Free carrier absorption)

hv <Eg
* Interband absorption = electron and hole pairs
(photodetector) iv > E,

* Intraband absorption > free carrier scattering (metal)
hv<E,
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Free Carrier Absorption (Drude Model)

electrons
o> d*x dx . .
o> mﬁ + mg; =qE, exp(jor) = —eE, exp(jor)
o> >
o> Not harmonic oscillator!
o>
g : damping coefficient due to scattering
—_
7 m: mass of carrier
X= Wexp(ja)t)
w - jog

Recall D=¢E+P,+P =5,(1+y,+%)E

N

Dielectric polarization Free Carrier Effect

(Dipole Moment) (electron or hole)
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Free Carrier Absorption

electrons ,
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What is g?

At steady state, electron move as a constant speed.

That is, d2x/dtz2 =0
dx

Z=¢E 1
mg- =e (1)

The definition of mobility p

dx
= 2
” UE (2)
e
g=—"
mu
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Mobility of Semiconductor
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Free Carrier Absorption

I ‘E‘Z = ‘EO‘Z exp[ jk,(n + jn")z]-exp[—jk,(n — jn")z]
= ‘EO‘Z exp[—2k,n'z] = ‘EO ‘2 exp[-az]

" 3
ag =2k zk0L= Ne

5  >> i
n mzngoazz,uc ( &) For optical wavelength

* Free carrier absorption is proportional to the carrier
density

» The refractive index is also affected by the free
carriers
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Free Carrier Absorption
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Temperature-Dependent Free Carrier Absorption
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Fig. 1.4.8. Free carrier absorption versus wavelength for high purity 51 at different tem-

peratures (Runyan [1966])
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Free Carrier Absorption on Proton
Bombardment Waveguide
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Surface Plasmons

+ The interaction of metals with electromagnetic radiation is largely
dictated by the free electrons in the metal.

+ Most metals possess a negative dielectric constant at optical
frequency

+ Only the surface can support optical wave propagation (why?)
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Optical Properties of Nobel Metals

Dipole Dispersion Free-Carrier Dispersion

Im(e} f" “
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Measure dielectric function of gold

e
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1 Theory / . .
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Surface Plasmons at plane interface
b 5 e n /L-J:Ck
[0)
Dielectric E
\ f/b\ '//:\\\ f/\\ }/ H & %
N AW | . |
I +++ T Sm k, ksp k,
Metal /T W.L. Banes, nature review article

+ EM wave and surface charge are oscillating.

* The fields in the perpendicular direction decay
exponentially.

* The momentum of SP is larger than the free space
photon.
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Surface Plasmons at plane interface
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Mathematically, the solution has to satisfy the wave equation

2

VXV xE(r,0) - &(r, 0)E(r,0) = 0
C

where  &(r,o)=¢(w) z<0 e(r,m)=¢g,(w) z>0
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Surface Plasmons at plane interface

TE wave or s-wave can not be a solution of surface plasmonic wave (H can not
satisfy the boundary condition)

Consider a TM wave or p-wave,

E

E =| 0 |exp(jkx— jot)exp(jk.z) where =12
E,

iz

Since the x-direction wave vector is conserved or Snell’s law

2
k’+k.’>=¢ek’® where k==
c

Since both spaces are source-free; thatis, V-D =0

kxE[,x + k[,;E[,; =0 (a)
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Surface Plasmons at plane interface

Consider the boundary condition,

El,x _EZ,X =0

glEl,z -&E z = 0

(b)

Combine (a) and (b), since the electric fields are not trivial solutions, the
determinant of respective matrix has to be zero; then

glkz,: _gzkl,z =0
Therefore
’ recall |k’ +k > =¢ek’
g€ ce, o o
2_ &8 42 &8 _ & 2 .
k*=—1"2-F =t and ki)z_ik i=12
& +é& & +e&, C g +é&
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Surface Plasmons at plane interface

Since the surface plasmonic mode are evanescent on the two sides of interface
k_ should be real and k; . should be imaginary

Therefore
g(w)-&,(w)<0
g(w)+¢,(w)<0

The dielectric functions must be negative with an absolute value exceeding
that of the other.

Nobel metals such as gold and silver, have a large negative real part of
the dielectric constant along with small imaginary part
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Properties of surface plasmonic waves

Consider the metal dielectric
& = gl' +j81"

Suppose the imaginary part is much smaller than the real part and ¢, is positive
real, the wave number of SP mode

kX = kXy + ij”

oo
g +¢&, ¢
where ; "
kY" ~ ‘?l 52 . 81 792 Q
Yo\ e +e, 26/(8 +ey)

and k_=2 & 1+ji” ky =2 ,522 1-j gl
Hoe\g e, 2¢, T\ +e, 2g +&,)
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Excitation of Surface Plasmonic Wave

(@) 4 = cky o+ w = chy/n In this case,
7 2 SPP can not
# 3 -
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w [ . i 55
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/ ) -
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; .
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Radiation Loss

(R+X,_)ﬁ— @

dt  f,
Bz-B
XI' : ?30 ? R Rﬁ = ﬁ
Waveguide dr p,
o
/:\9 A The angular phase velocity
* should be the same.
x, =P hg
n(r) Bent By
. o,
J W S”ai;‘\
- Radiation
Radius Xr
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What is Attenuation Coefficient (a)?

AZ

1 dP(2) _ 3
P2 de (Because P(z) = F, exp(—az))

1 AP(z) €4——— Dissipated Power

TN A _

Propagation length
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What is o due to Radiation Loss?

rad

Suppose the field
n(r) //( Bent a a
E(x)=4/C, cos(hx) _ESXSE
: —(al/2
) g Straight | £(x) = /C, cos(%’) exp[_[x(a)] K 2%
: e

o
-

Radius y
Total Power — P(z,)

o = J.E (X)dx = [2 +2flhsin(ha)+7/cosz(h7a)]

Radiated Power = AP(z)

rad

- j @ =C, Loos(Whyexp(-2 (X, -2
2 14 2
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What is Attenuation Coefficient (a)?

The propagation length of unguided mode (analogy to a truncated waveguide)

Near field
beam width

—— ) Far field
_____ angle

Wavequide t‘—!c—'l

2 . . .
_a_a ( Because sin(?) _ i) a: waveguide width

4 24 a  : wavelength
The attenuated coefficient'

7 cos ( %) exp(= yﬁzﬂ%)ﬁ“mm exp(f)

1 . , ha . 5
—+—sin(ha)+ y cos™(—
[2 o (ha)+y (2)]a

o=
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What is o due to Radiation Loss?

gcos2 (h7a) exp(— 2h-h R)24, exp(g)
a= A L= C exp(-C,R)
1%+ L sin(ha) + y cos* ("% yja?
2 2k 2

Cz :gﬁz_ﬂ()
v B

* The attenuation coefficient decreases with the
bending radius

* The attenuation coefficient decrease with the index
contrast
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What is Attenuation Coefficient (a)?

A
10 F \
A=0.005 \ \
T 1o A=0.0035
5 A=0.002
E —
3
801
0.01 . ' . >
1 10 100

Radius (mm)
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Other Losses --- Intersection

AN

Intersecting loss (dB)
Crosstalk (dB)

Angle ; (deg.)

Fic. 10.13  Crossthrough (or intersection) loss versus cross angle in the silica single-
mode crossthrough waveguide.” A. Himeno, M. Kobayashi, and H. Terui, Electron.
Letr. 1985, IEE.
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Waveguide Loss Measurement

How to distinguish the loss?
Waveguide loss or coupling loss?

Waveguide loss of fundamental mode or
high-order modes?

Scattering loss, absorption loss, or
radiation loss?
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End-Fire Coupling Loss Measurement

- Optical
Laser Waveguide Detector
Lens Substrate Lens
— In(R /P,
Z a :M for Z2 > Zl
20 T T T T T ZZ _Zl
3 " | ' N e DO-2cm’ * Advantage
w — -
g BE H = — Simple and direct
w N .
E o 1 ° Disadvantage
- af UEIj - — Alignment sensitive
g . D:t . — End face condition should be
< 9 —L — i consistent
& — Can’t distinguish the loss
| N p . " . L associated with different
0 2 4 6 mode number

LENGTH [mm]
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Prism-Coupled Loss Measurement

Waveguide

Substrate

+ Advantage
— Can measure the loss from different modes
— Alignment insensitive
— End face quality is not required
+ Disadvantage
— Less accurate (It is difficult to reproduce the coupling loss)
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Fabry-Perot

- . o
. U, =U, texp(-jp)exp(-—L)
-
-
. U, =U, 7" exp(-j2¢)exp(-aL)
- | |
< [ ]
| |
_ | |
U, .
U < U, 3
'. — Uo—zn:Un
4 . (-7 exp(-al
U, I,=U,-U, _( 73 exp( .az)
(1-R)"+4Rsin" ¢
y?t }/,t

where R =y’ exp(-al)
v :reflection

¢ s transmission 1 [ U L i —IJ Lo i =17

a=-—In| —
L 4 Imax/lmin +1

2

t'=1-y

2 Iin:(pzé(2n+l)ﬂ'

mi
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Fabry-Perot Loss Measurement

+ Advantage
— Alignment insensitive
+ Disadvantage

— End face condition should
be consistent

— Only for single mode

Relative Transmission

waveguide
L . — Light source should be
o L 1 1 L i
: - - - o single frequency
Phase Shift ¢ (rad.} L
< >
SP > |—

L

7 : Reflectivity Ll 2 Vi / Tin —1
a=-—In|—
}/2 \llmax/lmin +1
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Scattering Loss Measurement

Lock-in Personal

amplifier

computer

vy

Lens-detector
setup

Preamplifier

Focused
laser

- \QChopper
rd

Collecting -\ ; ,/Waveguide
solid angle - Setup

ion
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Scattering loss Measurement by Image Analysis

Scattering intensity (dB)

1 I

= =
—1330nm 12.5+/-1 dBfem
——1550 nm 3.5+/-2 dBfcm

Distance (cm)

ht scattered vertically from the reference optical circuit of Fig.1(h) witha
uide for TE polarized light. Blue curve corresponds to the wavelength

Fig. 3. Intensity of lig]
450nm wide strip wa
of 1550nm and black to [330nm, Inset: [ the wertically seattered light acquired by the

IR camera. Several of such images were averaged to produce the traces in the main figure, 1ited Photonic Devices




