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Waveguide Fabrication

Class: Integrated Photonic Devices
Time: Fri. 8:00am ~ 11:00am. 

Classroom: 資電206
Lecturer: Prof. 李明昌(Ming-Chang Lee)

Types of Optical Waveguide

Diffused Waveguide

Channel Waveguide

Rib Waveguide

• Silicon
• Silicon Dioxide
• LiNaO, LiTaO
• III-V (GaAs, …)
• Polymer

• Index-confined
• Profile-confined
• Combined

Materials

Principle of confinement
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Typical Process of Etched Waveguide 

• Thin Film Deposition 
– Sputtering
– Chemical Vapor Deposition (CVD)
– Thermal Oxidation (SiO2)

• Photolithography
• Etching Process

The waveguide dimension is usually controlled by thin 
film thickness and photolithography pattern.

Sputtering 

Plasma
Diffusion

Ar+

e-

E
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Physics of Sputtering

Energies of Bombarding Ions
< 5 eV: Ions are reflected or adsorbed
5 – 10 eV: Ions cause surface damage
10 eV - 10 keV: Ions cause sputtering
> 10 keV: Ions primarily undergo implantation

Sputter Yield:
The number of 
sputtered atoms 
per impinging ion

saturated

Sputtering Angle Effect

• Sputter yield increase as sputtering angle
• As sputtering angle approximate 90°, the sputtering yield 

reduces due to incident atom’s sliding 

φ

d cscd φ

Atom’s sliding

d: penetrating depth

cscφ
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Chemical Vapor Deposition

M. Mardou, “Fundamentals of Microfabrication”

• Reaction Limited Process
• Mass-Transfer Limited Process

The reaction rate depends on 
the slowest process

Types of CVD:
• LPCVD
• APCVD
• PECVD

CVD Deposition Rate

• A ~ Mass-Transfer Limited Process
• B ~ Reaction Limited Process

s surfaceR K N= ⋅

0 exp( )as
EK K
kT
−=

0

1log( ) ( )s aK E
K k T

= −
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Incident Angle

• Film is thicker in convex corners
• Film is thinner in concave corners

Reflow

Gap Dependency

• Mass-Transfer Limited Process --- Fast, but not conformal
• Reaction Limited Process --- Conformal, but slow

Wolf and Tauber

Large Gap

Small Gap
Pinch-off
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Poly Crystalline

• Grain size depends on deposition temperature
– Hotter deposition leads to larger grain structure

Mardou

Poly-silicon

Thermal Oxidation

Si + 2H2O SiO2 + H2 (wet)

Si + O2 SiO2 (dry)

• Thermal oxidation consume silicon 
• Wet oxidation has faster reaction 

rate. However, dry oxidation has 
better thin film qualityM. Mardou, “Fundamentals of Microfabrication”



7

2D Profile Transformation

Symmetrical Expansion Asymmetrical Expansion

Bird Bead

Photolithography and Etch

• The exposed area is 
developed --- positive resist.

• The unexposed area is 
developed --- negative resist.

• The patterned photoresist
protect the area from etching
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Spin Coating of Photoresist

• The thickness is controlled by 
material viscosity and spin 
speed.

Types of Etching Process

• Anisotropic:
– Best for making small gaps and vertical sidewalls
– Typically more costly

• Isotropic:
– Best to use with large geometries, when sidewall slope dons not 

matter, and to undercut the mask
– Quick, easy, cheap

(Photoresist or other thin film)
M. Mardou, “Fundamentals of Microfabrication”
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Mechanics of the Etching Process

• Slow process step dominate!

Examples of Etched Waveguides

Baba, 2002

Waveguide

AWG
Cross Connect

Splitter
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• Carrier-Concentration-Reduction 
Waveguides

Proton Bombardment

Proton

GaAs or GaP

• Proton bombardment decreases the free carrier density due to 
the lattice defects (carrier traps).

• The free carrier density affect the refractive index.
• The index contrast is not proportional to the density contrast.

depth

Refractive Index Free Carrier Density

∆n
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Free-Carrier-Dependent Refractive Index
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(Discussed in free-carrier absorption loss)Recall

For two layers with different free carrier densities, the index contrast ∆n:

• The index contrast is frequency-dependent. Higher frequency 
has lower index contrast. 

0 ,n Air

Cut-off Conditions for Free-Carrier Controlled 
Waveguides

• The cut-off condition is independent of wavelength 
(frequency).
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Ion Exchange and Migration

+

+
(Molten)

Ion Implantation

(1) Ion source
(2) Mass spectrometer
(3) High-voltage accelerator 
(4) X- and y-axis deflection system
(5) Target chamber

0

T IQ dt
n q A

=
⋅ ⋅∫

: ( )  Q dorse per unit area
:  I total current
:T time
:A area
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Ion Implantation

• Electrostatically accelerate ions to velocities and 
energies that can deposit or implant dopants below 
the surface
– Process performed at low temperature
– Instant-on and instant-off control
– Precise control of implanting current and charge allow for 

better control of the implanted dose
– Increase implant energies can penetrate thin films of 

materials
– The peak of implanted dopant profiles are always below the 

surface (buried)

Implant Dopant Distribution (Planar Implantation)  

0 0

( )
T IQ dt A N x dx
n q A

∞

= = ⋅
⋅ ⋅∫ ∫ 2 p PQ N Rπ= ⋅ ⋅∆

If profile is fully below surface
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Implantation Parameter vs. Implantation Energy

• Typical Implantation Energy ~ 10 to 200 keV
• Typical Depth of Implant ~ 0.05 µm to 1 µm

Wolf and Tauber

3D Implantation (Point Source)

• Gaussian distribution (lateral and vertical)
– Vertical spread determined by the straggle 
– Lateral spread determined by the lateral straggle 

2 2

( , ) exp[ ] exp[ ]
2 2
p

implant p
p p

x R yN x y N
R R ⊥
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3D Implantation (Plane Source)

2 2

2

'( , ) exp[ ] exp[ ] '
2 2

exp[ ]
2 2 2

a
p

implant p
ap p

p
p

p p p

x R y yN x y N dy
R R

x R y a y aN erfc erfc
R R R

+

− ⊥

⊥ ⊥

   − −− ⋅ −      ∆ ∆   

      − − + = − ⋅ −          ∆ ∆ ∆       

∫∼

Complementary error function

-a +a

3D Sculpture by Ion Implantation

MicrodiskWaveguide

Silicon

Oxide

O2- O2-O2-

Microdisk

Waveguide
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• Epitaxial Growth Waveguides

Issues of Monolithic Integrated Photonic 
Device

• If the material can emit light, it can also absorb light.
• Can we have different band-gap energy in the same substrate?

Valence Band

Conduction Band

gE hν=

cE

vE

:  optical frequencyν

Valence Band

Conduction Band

gE hν=

cE

vE

:  optical frequencyν

Absorption (Detector) Emission (Emitter)

 (waveguide) >  (emitter)  >  (detector)g g gE E E
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Ga(1-x)AlxAs Waveguide

• Controlling the Al 
concentration can engineer 
the band-gap energy.

2( ) 1.439 1.042 0.468gE x x x= + +

Interband Absorption

Refractive Index Engineering of Ga(1-x)AlxAs 

2
2( ) ( ) ( )
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Bn x A x D x
C x
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λ

= + −
−

( ) 10.906 2.92A x x= −
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Sellmeier Equation

1 (1 ), x xn Ga Al As−

0 ,n Air

2 (1 ), y yn Ga Al As−

gt
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Cut-Off Condition for Ga(1-x)AlxAs

1 (1 ), x xn Ga Al As−

0 ,n Air

Cut-off ConditionIndex Contrast

Fundamental 
Mode

2 (1 ), y yn Ga Al As−

gt

∆n
= 

n 1
 -

n 2

0.8

• The cut-off condition is dependent on the 
ratio of wavelength (frequency) and 
thickness.

Lattice strain

• Lattice constant mismatch results in lattice strain.
• Lattice strain can make the fabrication difficult 

(delaminating) and induce non-radiative
recombination.   
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Fabrication

• Liquid Phase Epitaxy
• Vapor Phase Epitaxy
• Molecular Beam Epitaxy (MBE) and MOCVD

A schematic of an MBE growth system

• Advantage
– Reduce the 

impurity
– Well-controlled 

doping
– Well-controlled 

thickness
• Disadvantage

– Toxic

Vertical-Cavity Semiconductor Lasers
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Other III-V Semiconductor 

• In addition to band-gap energy, the lattice constant have to be 
considered.

Visible Light

Infrared Light

(1 )x xGa Al As−

(1 ) (1 )x x y yIn Ga As P− −

0.46(1 )X y= −

Measured Band gaps and lattice matching

1. Determine the wavelength (band gap)
2. Determine the concentration of phosphorous Y
3. Determine the concentration of Ga (lattice match)

0.46(1 )X y= −
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• Polymer Waveguide

Key Properties of Optical Polymers
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Polymer Waveguide Devices

• Some polymer is similar to negative photoresist which is easy to be fabricated

UV
Metal (Al)

Conventional Polymer Process (Photobleaching)

Thickness vs. Dilution (Spin Coating)
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Process of Polymide

Polymides are polymers with excellent thermal stability, 
solvent resistance and electrical properties.

Require Etching Process

• Optical Fiber Waveguide Device
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Fiber Bragg Grating Fabrication

Fiber

Bragg Grating

Period


