Waveguide Dispersion

Class: Integrated Photonic Devices
Time: Fri. 8:00am ~ 11:00am.
Classroom: E’f”FEf—JZOG
Lecturer: Prof. ?FIEJ]E',(Ming-Chang Lee)
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Phase Velocity
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Consider a monochromatic plane wave
E(r.t)=E,exp(jkz — jox) and @=kz-ax

For a point of constant phase; that is
z= %t +constant
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It is like the point moving with a velocity (v,) :
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In reality, the light is always be modulated with a pulse. Therefore, there is always
a finite bandwidth of frequencies. With the frequency assigned

a =at+tha and @, =a-Aa

k=k+Dc  and  k =k-Dk




Group Velocity

Assuming the waves have equal amplitudes, E,, the superposition can be
described as

E, +E, = E,(cos[(k + )z —(@ + Dcdr)] +eos[(k — D)z ~ - Dayr)])

v

E +E, =2E cos(kz —ax)cos(Dkz — Aar)
Carrier  Modulation

Like phase velocity, for a point of constant phase on the crest of the envelop

Aw
z =——t +constant

It is like the point moving with a velocity: %)

Group Velocity

The group velocity is defined:

Recall w= E
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Group Velocity

Index vs. group index
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In reality, the group velocity is usually a function of optical frequency
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: group-velocity dispersion

In the measurement of the broadening of optical pulse, another dispersion
coefficient is defined as
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unit: ps/lkm-nm

Chromatic Dispersion in Waveguide

* Material Dispersion

— The refractive index varies with frequency
(wavelength)

* Model Dispersion
— The propagation constant varied with different
mode (m=1,2,3,..)
+ Waveguide Dispersion

— The propagation constant varied with frequency
(wavelength)




Material Dispersion

_ _ _ Electric Polarization
Recall  D(r,t)=&,E(r,0)+ P(r,t) &=
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The electric polarization comes from each dipole moment. As in the figure,
; =q 2x
Electric Polarization is the bulk polarization of the material

P=Np

Material Dispersion

The binding energy of a hydrogen atom 1dV
V(x)=V(x,) +EW
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The Lorentz model of the atom consists of a heavy nucleus bound to a light electron

Nucleus Spring Electron




Material Dispersion

Nucleus Spring Electron
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Therefore, the motion can be modelled as

dx

d —+{m —+kx —eE(t) (recallq=-e)

Material Dispersion

Nucleus Spring Electron

—+( —+kx —eE(1)

/ l Divided by m

Friction dt dt +w X = —E(t) where @) = \r
Assume E() = E, exp(jat) x(t)=$E exp(jar)
0 plJ %2 _a)z +sz 0




Material Dispersion
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Recall the electric displacement
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Material Dispersion
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« X’ represents the dispersion and x’’ represents the loss (or
gain).

+ X and X” are not independent. Actually, they follow the
Kramers-Kronig Relation (KKR) due to the causality.

* X" >0 means the loss; X” < 0 means the gain.




Kramers-Kronig Relation (KKR)
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* Once the real part is known over the entire spectrum,
its imaginary part can be found, and vice versa.

* x’(w) is an even function, while y ’(w) is an odd
function.

Material Dispersion

Anomalous dispersion
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Normal dispersion

Dielectric Constant: €
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Model Dispersion

Waveguide

Low-order mode ———————1p

High-order mode =%

+ The propagation time varies with different modes

AT = Tlow - Thigh

Model Dispersion

Waveguide

Low-order mode ———————1p
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Model Dispersion

Waveguide

Low-order mode ———————1p
High-order mode =%

n.oo-n, . dn dn, ..
— Ccore cladding core _ cladding
A, = (2 )

w dw

n

~ core B nclndding

C

AT = ATgL = (ncnre - ncladd[ng) L
c

Waveguide Dispersion
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Group Velocity Dispersion




Combined Waveguide and Material Dispersion
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The actual single-mode waveguide
dispersion should consider both waveguide
dispersion and material dispersion
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