Waveguide Dispersion

Class: Integrated Photonic Devices
Time: Fri. 8:00am ~ 11:00am.

Classroom: 資電206

Lecturer: Prof. 李明昌(Ming-Chang Lee)

Phase Velocity

 $k \equiv k_0 n$

Consider a monochromatic plane wave

$$\vec{\mathbf{E}}(r,t) = \vec{\mathbf{E}}_{0} \exp(jkz - j\omega t)$$
 and $\phi = kz - \omega t$

For a point of constant phase; that is

$$z = \frac{\omega}{k}t + \mathbf{constant}$$

It is like the point moving with a velocity $(\mathbf{v_p})$: $\frac{\omega}{k} = \frac{\omega}{k_0 n} = \frac{c}{n}$

Group Velocity

In reality, the light is always be modulated with a pulse. Therefore, there is always a finite bandwidth of frequencies. With the frequency assigned

$$\left\{ \begin{array}{ll} \omega_{\rm l} = \omega + \Delta \omega & \quad \text{and} \quad \quad \omega_{\rm 2} = \omega - \Delta \omega \\ \\ k_{\rm l} = k + \Delta k & \quad \text{and} \quad \quad k_{\rm 2} = k - \Delta k \end{array} \right.$$

Group Velocity

Assuming the waves have equal amplitudes, $\mathbf{E}_{\mathbf{0}}$, the superposition can be described as

$$E_1 + E_2 = E_0(\cos[(k + \Delta k)z - (\omega + \Delta \omega)t)] + \cos[((k - \Delta k)z - (\omega - \Delta \omega)t)])$$

$$E_1 + E_2 = 2E_0 \cos(kz - \omega t) \cos(\Delta kz - \Delta \omega t)$$
Carrier Modulation

Like phase velocity, for a point of constant phase on the crest of the envelop

$$z = \frac{\Delta \omega}{\Delta k} t + \mathbf{constant}$$

It is like the point moving with a velocity: $\frac{\Delta \omega}{\Delta k}$

Group Velocity

The group velocity is defined:

$$\begin{split} v_{\rm g} &= \lim_{\Delta\omega\to 0} \frac{\Delta\omega}{\Delta k} = \frac{d\,\omega}{dk} \\ \text{Recall} \quad \omega &= \frac{kc}{n} \\ \\ v_{\rm g} &= \frac{d\,\omega}{dk} = \frac{d}{dk} (\frac{kc}{n}) = \frac{c}{n} - \frac{kc}{n^2} \frac{dn}{dk} \\ &= v_p - \frac{kc}{n^2} \frac{dn}{dk} \quad \text{(Relation between v_p abd v_g)} \end{split}$$

$$\tau_g = v_g^{-1} = \left(\frac{c}{n} - \frac{kc}{n^2} \frac{dn}{dk}\right)^{-1}$$
 (Propagation Time per unit length)

Group Velocity

Index vs. group index

Index:
$$v_p = \frac{c}{n}$$

Group Index:
$$v_g = \frac{c}{N}$$

Group Index:
$$v_g = \frac{c}{N}$$
 $N = n - \lambda_0 \frac{dn}{d\lambda_0}$

In reality, the group velocity is usually a function of optical frequency

$$\frac{d}{d\omega}v_g^{-1} = \frac{d^2k}{d\omega^2} \neq 0$$

$$\frac{d}{d\omega}v_g^{-1} = \frac{d^2k}{d\omega^2} \neq 0$$
 $\frac{d^2k}{d\omega^2}$: group-velocity dispersion

In the measurement of the broadening of optical pulse, another dispersion coefficient is defined as

$$D_{\lambda} = -\frac{2\pi c}{\lambda_{\rm p}^2} \frac{d^2k}{d\omega^2}$$
 unit: ps/km·nm

Chromatic Dispersion in Waveguide

- Material Dispersion
 - The refractive index varies with frequency (wavelength)
- Model Dispersion
 - The propagation constant varied with different mode (m=1,2,3,..)
- Waveguide Dispersion
 - The propagation constant varied with frequency (wavelength)

Material Dispersion

Recall
$$\overrightarrow{D}(r,t) = \varepsilon_0 \overrightarrow{E}(r,t) + \overrightarrow{P}(r,t)$$
 Electric Polarization

The electric polarization comes from each dipole moment. As in the figure,

$$\vec{p} = q \cdot 2\vec{x}$$

Electric Polarization is the bulk polarization of the material

$$\vec{P} = N\vec{p}$$

Material Dispersion

The binding energy of a hydrogen atom

$$V(x) \approx V(x_0) + \frac{1}{2} \frac{d^2 V}{dx^2} \Big|_{x=x_0} (x - x_0)^2$$

(Like a spring)!

The Lorentz model of the atom consists of a heavy nucleus bound to a light electron

Material Dispersion

The Lorentz model acts as harmonic oscillator

$$\overrightarrow{F}=q\overrightarrow{E}$$

$$m=\frac{m_em_n}{m_e+m_n}\approx m_e \quad \text{(We use the center of mass picture)}$$

Therefore, the motion can be modelled as

$$m\frac{d^2x}{dt^2} + \zeta m\frac{dx}{dt} + kx = -eE(t) \quad \text{(recall q = -e)}$$

Material Dispersion

Assume
$$E(t) = E_0 \exp(j\omega t)$$
 $\mathbf{x}(t) = \frac{1}{\omega t}$

$$\mathbf{x}(t) = \frac{-e/m}{\omega_0^2 - \omega^2 + j\zeta\omega} E_0 \exp(j\omega t)$$

Material Dispersion

$$\mathbf{x}(t) = \frac{-e/m}{\omega_0^2 - \omega^2 + j\zeta\omega} E_0 \exp(j\omega t)$$

Recall the electric displacement

$$\begin{split} \mathbf{D} &= \varepsilon_0 \mathbf{E} + Nq \mathbf{x} = \varepsilon_0 \mathbf{E} - Ne \mathbf{x} \\ &= \varepsilon_0 \mathbf{E} + \frac{Ne^2 / m}{\omega_0^2 - \omega^2 + j \xi \omega} \mathbf{E} \\ &= \varepsilon_0 (1 + \frac{Ne^2 / m}{\varepsilon_0 (\omega_0^2 - \omega^2 + j \xi \omega)}) \mathbf{E} \\ &\qquad \qquad \chi \quad \text{Susceptibility} \quad \chi(\omega) = \chi'(\omega) - j \chi'(\omega) \\ \chi'(\omega) &= \frac{(Ne^2 / m)(\omega_0^2 - \omega^2)}{\varepsilon_0 [(\omega_0^2 - \omega^2)^2 + \zeta^2 \omega^2]} \\ \chi'(\omega) &= \frac{(Ne^2 / m)(\zeta \omega)}{\varepsilon_0 [(\omega_0^2 - \omega^2)^2 + \zeta^2 \omega^2]} \end{split}$$

Material Dispersion

- χ^{\prime} represents the dispersion and $\chi^{\prime\prime}$ represents the loss (or gain).
- χ' and χ'' are not independent. Actually, they follow the Kramers-Krönig Relation (KKR) due to the causality.
- χ " > 0 means the loss; χ " < 0 means the gain.

Kramers-Krönig Relation (KKR)

$$\chi'(\omega) = \frac{2}{\pi} P \int_{0}^{\infty} \frac{\omega' \chi''(\omega')}{\omega'^2 - \omega^2} d\omega' \quad \longleftrightarrow \quad \chi''(\omega) = -\frac{2}{\pi} P \int_{0}^{\infty} \frac{\omega' \chi'(\omega')}{\omega'^2 - \omega^2} d\omega'$$

- Once the real part is known over the entire spectrum, its imaginary part can be found, and vice versa.
- $\chi'(\omega)$ is an even function, while $\chi''(\omega)$ is an odd function.

Material Dispersion

Dielectric Constant: ε

$$\mathbf{D} = \boldsymbol{\varepsilon}_0 (1 + \boldsymbol{\chi}) \mathbf{E} = \boldsymbol{\varepsilon}_0 \boldsymbol{\varepsilon} \mathbf{E}$$

$$\varepsilon' = 1 + \chi'$$

$$\mathbf{\epsilon}^{"} = \mathbf{\chi}^{"}$$

$$\chi = \frac{Ne^2}{\varepsilon_0 m} \sum_{n} \frac{f_n}{\omega_n^2 - \omega^2 + j\zeta_n \omega}$$

fn: fraction of oscillation strength

Model Dispersion

The propagation time varies with different modes

$$\Delta \tau = \tau_{low} - \tau_{high}$$

Model Dispersion

Low-order mode

High-order mode

The group delay:
$$au_{\rm g} = \frac{deta}{d\omega}$$

The fundamental mode:
$$\beta_f \approx \frac{\omega n_{core}}{c}$$
The highest-order mode:
$$\beta_h \approx \frac{\omega n_{cladding}}{c}$$

$$\tau_h = \frac{d(\omega n_{core}/c)}{d\omega} = \frac{n_{core}}{c} + k_0 \frac{dn_{core}}{d\omega}$$

$$\tau_h = \frac{d(\omega n_{cladding}/c)}{d\omega} = \frac{n_{cladding}}{c} + k_0 \frac{dn_{cladding}}{d\omega}$$

Model Dispersion

Low-order mode High-order mode

$$\begin{split} \Delta \tau_g &= \frac{n_{core} - n_{cladding}}{c} + k_0 (\frac{dn_{core}}{d\omega} - \frac{dn_{cladding}}{d\omega}) \\ &\approx \frac{n_{core} - n_{cladding}}{c} \end{split}$$

$$\Delta \tau = \Delta \tau_{g} L = \frac{(n_{core} - n_{cladding})}{c} L$$

Waveguide Dispersion

$$\Delta \tau_{g} = \frac{d\beta}{d\omega}\bigg|_{\omega_{1}} - \frac{d\beta}{d\omega}\bigg|_{\omega_{2}}$$

$$\approx \frac{d^{2}\beta}{d\omega^{2}}\Delta\omega$$

$$\Delta \tau = \frac{d^2 \beta}{d\omega^2} \Delta \omega L$$

Group Velocity Dispersion

Combined Waveguide and Material Dispersion

 The actual single-mode waveguide dispersion should consider both waveguide dispersion and material dispersion

