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Waveguide Coupler II

Class: Integrated Photonic Devices
Time: Fri. 8:00am ~ 11:00am. 

Classroom: 資電206
Lecturer: Prof. 李明昌(Ming-Chang Lee)
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Free-Space Mach-Zehnder Interferometer
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Guided-Wave Mach-Zehnder Interferometer
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Guided-Wave Mach-Zehnder Interferometer
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Guided-Wave Mach-Zehnder Interferometer
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It is not linear modulation!
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Guided-Wave Mach-Zehnder Interferometer
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Multi-Mode Interference (MMI) Coupler

• The MMI region can be seen as a multi-mode waveguide.
• The fundamental of the power transfer comes from multiple 

modes’ beating.

MMI (3dB) Coupler

Waveguide I

Waveguide II

Waveguide I

Waveguide II
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Multi-Mode Interference (MMI) Coupler
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Effective width
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Multi-Mode Interference (MMI) Coupler
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Multi-Mode Interference (MMI) Coupler
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Multi-Mode Interference (MMI) Coupler
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If the “spatial spectrum” of the input field Ψ is narrow enough not to 
excite unguided modes, it may be decomposed into the guided modes

The field profile at a distance z

The relative phase correspondent to fundamental mode 
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Multi-Mode Interference (MMI) Coupler

(A) Single Images 
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(Image is reproduced)
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Multi-Mode Interference (MMI) Coupler

(B) Multiple Images 
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Multi-Mode Interference (MMI) Coupler

3 dB coupler

100% coupler

• Advantage of MMI:
– The length could be shorter
– It could be extend to a N × N coupler/splitter
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Arrayed Waveguide for Star Coupler
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Principle of Arrayed-Waveguide Grating (AWG) 

Katsunari Okamoto

AWG can be used for wavelength de-multiplexer

• Input/Ouput Waveguides
• Two focus slab regions
• A phase array of multiple channel waveguides
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Principle of Arrayed-Waveguide Grating (AWG) 

For the phase array of waveguides, the path-length difference ΔL 
between neighboring waveguides results in phase difference by

/L λ∆

In the first slab, the input waveguide separation is D1, the array 
waveguide separation is d1, and the radius of curvature is f1. Similar 
definition is shown in the second slab. 

The light input at the x1 position (x1 is measured counterclockwise 
from the center of the input waveguide) is radiated to the first slab and 
then excites the arrayed waveguides. The amplitude profile of ai, 
electric field at each arrayed waveguide, is usually a Gaussian 
distribution. 

After traveling through the arrayed waveguides, the light beams 
constructively interfere into one focal point x in the second slab.
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Principle of Arrayed-Waveguide Grating (AWG) 

Second slab 
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where βs and βc denote the propagation 
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Principle of Arrayed-Waveguide Grating (AWG) 

Second slab 
region

Output Waveguides

Arrayed Waveguides

To satisfy the equation, if
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, the light input position x1 will focus on the output 
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Principle of Arrayed-Waveguide Grating (AWG) 

Second slab 
region

Output Waveguides

Arrayed Waveguides

The dispersion of the focal position x with respect 
to wavelength λfor the fixed light input position 
x1 is given by
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The dispersion of the input-side position x1 with 
respect to wavelength λfor the fixed light output 
position x is given by
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The input and output waveguide separations are 
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(differentiate (a))

(differentiate (a))
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Principle of Arrayed-Waveguide Grating (AWG) 

Second slab 
region

Output Waveguides

Arrayed Waveguides

The wavelength spacing in the output side for the 
fixed light input position x1
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The wavelength spacing in the input side for the 
fixed light output position x

1 1 0

1

s
in

c

n d D
N f L

λλ∆ =
∆

Generally, the waveguide parameters in the first 
and second slab regions are the same. Then the 
channel spacings are the same 

in outλ λ λ∆ = ∆ ≡ ∆

WDM channel spacing
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Principle of Arrayed-Waveguide Grating (AWG) 

Second slab 
region

Output Waveguides

Arrayed Waveguides

The path-length difference ΔL is obtained as
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Free Spatial Range of AWG (m=0,1,2,…)

Katsunari Okamoto

The spatial separation of the mth and 
(m+1)th focus beams for the same 
wavelength is given
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