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Free-Space Mach-Zehnder Interferometer
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Guided-Wave Mach-Zehnder Interferometer
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Guided-Wave Mach-Zehnder Interferometer
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Guided-Wave Mach-Zehnder Interferometer
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’ It is not linear modulation!
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Guided-Wave Mach-Zehnder Interferometer
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Multi-Mode Interference (MMI) Coupler
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The MMI region can be seen as a multi-mode waveguide.

The fundamental of the power transfer comes from multiple
modes’ beating.
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Multi-Mode Interference (MMI) Coupler
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Suppose the MMI is well-confined
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Multi-Mode Interference (MMI) Coupler
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Define the L as the beating length of the two lowest-order modes
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Multi-Mode Interference (MMI) Coupler
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Suppose the input field profile ¥(,0) imposed atz =0

Y(y,0)= ZCV¢(y) #(») is the eigenmode (include radiation mode)
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where €, =
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Field-orthogonality relations
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Multi-Mode Interference (MMI) Coupler

If the “spatial spectrum” of the input field W is narrow enough not to
excite unguided modes, it may be decomposed into the guided modes
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even mode (v is even) symmetric
odd mode (v is odd) antisymmetric

The field profile at a distance z
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Multi-Mode Interference (MMI) Coupler

(A) Single Images
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If L= p(3L”) p=1,3,5,...(odd)
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Multi-Mode Interference (MMI) Coupler

(B) Multiple Images
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Multi-Mode Interference (MMI) Coupler
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+ Advantage of MMI:
— The length could be shorter
— It could be extend to a N x N coupler/splitter
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Arrayed Waveguide for Star Coupler
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Principle of Arrayed-Waveguide Grating (AWG)

AWG can be used for wavelength de-multiplexer

Array waveguides

\ Katsunari Okamoto
Intput waveguides Output waveguides

* Input/Ouput Waveguides
* Two focus slab regions
* A phase array of multiple channel waveguides
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Principle of Arrayed-Waveguide Grating (AWG)

For the phase array of waveguides, the path-length difference AL
between neighboring waveguides results in phase difference by

AL/ A

In the first slab, the input waveguide separation is D,, the array
waveguide separation is d,, and the radius of curvature is f, Similar
definition is shown in the second slab.

The light input at the x, position (x, is measured counterclockwise
from the center of the input waveguide) is radiated to the first slab and
then excites the arrayed waveguides. The amplitude profile of a,
electric field at each arrayed waveguide, is usually a Gaussian
distribution.

After traveling through the arrayed waveguides, the light beams
constructively interfere into one focal point x in the second slab.
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Principle of Arrayed-Waveguide Grating (AWG)
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Second slab I where 3¢ and S .denote the propagation
region | constants in the slab region and array waveguide

! / A is the center wavelength of the WDM system,
and L, is the minimum array waveguide length
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Arrayed Waveguides
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Principle of Arrayed-Waveguide Grating (AWG)

Output W;
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Arrayed Waveguides

To satisfy the equation, if

B.(A)AL =2mir
and
dx _dx
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, the light input position x, will focus on the output
position x

We define the effective index of the array
waveguide
A. and n :g
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Principle of Arrayed-Waveguide Grating (AWG)

Second slab
region

Arrayed Waveguides

Output W;

The dispersion of the focal position x with respect
to wavelength A for the fixed light input position
X, is given by

__N.fAL

Ax . .
M ndl, (differentiate (a))

The dispersion of the input-side position x; with
respect to wavelength A for the fixed light output
position x is given by

% = 7NCAAL

M ndd, (differentiate (a))

The input and output waveguide separations are

|Ax|=D,  and |Ax]=D
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Principle of Arrayed-Waveguide Grating (AWG)
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The wavelength spacing in the output side for the
fixed light input position x,
_ndDA,
out NCfAL

The wavelength spacing in the input side for the
fixed light output position x

- DAy
mn NLfI‘AL
Generally, the waveguide parameters in the first
and second slab regions are the same. Then the
channel spacings are the same
B, =M, =0
%

WDM channel spacing
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Principle of Arrayed-Waveguide Grating (AWG)
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The path-length difference AL is obtained as

_ndDA,
N.fDA
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Free Spatial Range of AWG (m=0,1,2,...)

The spatial separation of the mth and
(m+1)th focus beams for the same
wavelength is given

X = —_ - Aﬂf
FSR ~ Xm T X T
nd

Xesr represents for free spatial range of
AWG. The number of available
wavelength channels N, is given by

v il [l
l |mIﬁT||| i N = XFSR _ /]Of
Figure 9.10: BPM simulation of the light focusing property in the second slab ch D nd
region for (a) the cemeal wavelength &, and (b) the shorter-wavelength compo- s
nent b < hy.

Katsunari Okamoto
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