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Basic Principles of Light Emission in 
Semiconductors

Class: Integrated Photonic Devices
Time: Fri. 8:00am ~ 11:00am. 

Classroom: 資電206
Lecturer: Prof. 李明昌(Ming-Chang Lee)
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Model for Light Generation and Absorption

Photon Figures (Particle Nature of Light)
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Model for Light Generation and Absorption

p k= =

(1) “Crystal momentum” of electron is defined as 
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k is the wavevector of the electron state and p is not the classic 
momentum of a free electron mv

Electron Figures in crystals

(2) “Effective mass” of electron in cystals
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Direct Absorption (Photon-Electron scattering)

Direct Bandgap Material Indirect Bandgap Material
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Indirect Absorption (Photon-Electron-Phonon 
scattering)

Direct Bandgap Material Indirect Bandgap Material
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Indirect transition rate is much smaller than direct transition rate

Ming-Chang Lee, Integrated Photonic Devices

Intraband absorption (Microscopic View)

• Both direct and indirect transitions also can take place within a 
band (intraband) or between energy states introduced by 
dopant atoms and/or defect. 

• The principles of conservation of energy and momentum apply.

E-K Diagram E-Space Diagram
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Light Emission in Semiconductor

Direct Bandgap Material Indirect Bandgap Material
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Under the thermal equilibrium condition, the emitted light is usually re-absorbed 
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Thermal-Equilibrium Carrier Density
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Fermi-Dirac distribution

: probability of occupancy of electron

: probability of occupancy of hole
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State density of conduction band
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Fermi Level
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Quasi-Equilibrium Carrier Density

• Fermi level is split due to optical pumping or current injection
• The electron and hole density changes due to the shift of Fermi-

Dirac distribution 

Fermi Level is split!
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p-n Junction Light Emitter

• Electrons and holes are injected and recombined when a 
forward bias voltage V0 is applied.  (Electroluminescence)

• Compared with gaseous sources, semiconductor lighters 
usually have single emission peak (corresponding to the band 
edge) and wide spectrum
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A p-n junction light-emitting Diode (LED)

• Actually, much of light is reabsorbed (due to reflection) before
it leaves the diode
– Making the layer of material between the junction and the surface 

very thin
– Choosing the a material with a very small absorption coefficient

-
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number of photons emitted in desired direction

number of hole electron pair injected
η =
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number of photons generated

number of hole electron pair injected
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Internal Quantum Efficiency

External Quantum Efficiency
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Interband Light-Matter Interaction

• Spontaneous emission mostly depends on the temperature, 
which affects the electron and hole distribution. (Fermi-Dirac 
distribution)

• Stimulated emission relies on the intensity of external photon 
flux 

Spontaneous Emission Stimulated EmissionStimulated Absorption

hv hv

hv

hv
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Band-to-Band Light Matter Interaction 

• N2 is much smaller than N1 under thermal-equilibrium condition. 
Therefore, the stimulated emission is very inefficient
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Population Inversion

Thermal Equilibrium After Population Inversion

Boltzmann 
Distribution
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• Population inversion is essential to let the stimulated emission
larger than absorption
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Stimulated Emission

• To get the stimulated emission, N2 has to be much larger than 
N1 (population density inversion)

( )g Fn FpE hv E E≤ ≤ −
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Population Density Inversion 

Direct Bandgap Material Indirect Bandgap Material

Pump Pump1110 sec−

0.25sec

• Population density inversion is applicable either by optical 
pumping or current injection 

• The life time of an indirect recombination is long, resulting in
nonradiative process such as lattice vibration

Quantum efficiency: ~1(direct bandgap materials) but ~0.001(indirect bandgap materials)


