Basic Principles of Light Emission in
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Model for Light Generation and Absorption

Photon Figures (Particle Nature of Light)

(1) “mass” of photon
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(2) Momentum of photon
p= mcu u : unit vector in the direction of travel of the photon
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Model for Light Generation and Absorption

Electron Figures in crystals

(1) “Crystal momentum” of electron is defined as

h
where 1=—_ and /h=6624x10"
(Planck’s constant)

k is the wavevector of the electron state and p is not the classic
momentum of a free electron mv

(2) “Effective mass” of electron in cystals
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Direct Absorption (Photon-Electron scattering)

Direct Bandgap Material Indirect Bandgap Material
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Indirect Absorption (Photon-Electron-Phonon
scattering)

Direct Bandgap Material Indirect Bandgap Material
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Indirect transition rate is much smaller than direct transition rate
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Intraband absorption (Microscopic View)
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+ Both direct and indirect transitions also can take place within a
band (intraband) or between energy states introduced by
dopant atoms and/or defect.

* The principles of conservation of energy and momentum apply.
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Light Emission in Semiconductor

Direct Bandgap Material Indirect Bandgap Material
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Under the thermal equilibrium condition, the emitted light is usually re-absorbed
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Thermal-Equilibrium Carrier Density

Fermi Level
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Fermi-Dirac distribution concentration
1 State density of conduction band
JE)= exp[(E-E,)/k,T]+1
P 078 n(E)=0.(E)f(E)
f(E) : probability of occupancy of electron P(E)=0,(E)1-f(E)]

1- f(E): probability of occupancy of hole State density of valance band
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Quasi-Equilibrium Carrier Density

Fermi Level is split! |
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* Fermi level is split due to optical pumping or current injection

* The electron and hole density changes due to the shift of Fermi-
Dirac distribution
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p-n Junction Light Emitter
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a [NO EXTERNAL BIAS) * b ( FORWARD BIASED)

* Electrons and holes are injected and recombined when a
forward bias voltage V, is applied. (Electroluminescence)

+ Compared with gaseous sources, semiconductor lighters
usually have single emission peak (corresponding to the band
edge) and wide spectrum
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A p-n junction light-emitting Diode (LED)
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» Actually, much of light is reabsorbed (due to reflection) before
it leaves the diode
— Making the layer of material between the junction and the surface
very thin
— Choosing the a material with a very small absorption coefficient
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Interband Light-Matter Interaction
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Spontaneous Emission Stimulated Absorption Stimulated Emission

+ Spontaneous emission mostly depends on the temperature,
which affects the electron and hole distribution. (Fermi-Dirac
distribution)

+ Stimulated emission relies on the intensity of external photon
flux
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Band-to-Band Light Matter Interaction
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B,N@v;,) : (stimulated) absorption
4,N, :spontaneous emission

B, N,@v,,) :stimulated emission

stimulated emission rate _ B, N,@v,,) _ B, N,

absorption B,N@v,) B, N,
stimulated emission rate _ B, N,@v,,) _B,, av, )
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* N, is much smaller than N, under thermal-equilibrium condition.
Therefore, the stimulated emission is very inefficient
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Population Inversion
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Thermal Equilibrium After Population Inversion

N,
Boltzmann Distribution: V'exp[(E2 —El)/kT]
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+ Population inversion is essential to let the stimulated emission
larger than absorption
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Stimulated Emission

* To get the stimulated emission, N, has to be much larger than
N1 (population density inversion)
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Population Density Inversion

Direct Bandgap Material Indirect Bandgap Material
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* Population density inversion is applicable either by optical
pumping or current injection

* The life time of an indirect recombination is long, resulting in
nonradiative process such as lattice vibration

Quantum efficiency: ~1(direct bandgap materials) but ~0.001(indirect bandgap materials)
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