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Introduction to Solid State Physics

Class: Integrated Photonic Devices
Time: Fri. 8:00am ~ 11:00am. 

Classroom: 資電206
Lecturer: Prof. 李明昌(Ming-Chang Lee)
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Electrons in An Atom
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Electrons in An Atom
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Electrons in Two atoms
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Analogy to A Coupled Two-Pendulum System
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One-dimensional Kronig-Penney Model
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Solutions of the S.E. in Kronig-Penny Model

Periodic Potential Well
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Bloch Theorem
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Density of States as a function of k and E

• For electrons near the bottom of the band, the band itself form a 
pseudo-potential well. The well bottom lies at Ec and the 
termination of the band at the crystal surfaces forms the walls of 
the well
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Density of States as a function of k and E

z

• The density of states near the band edges can therefore be 
equal to the density of states available to a particle of mass m* 

in a three dimension box with the dimension of the crystal
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Density of States as a function of k and E
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• To solve the equation, we employ the separation of variables 
technique; that is

(b)

• Substitute (b) to (a)

(Solution)
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Density of States as a function of k and E

- Densities of states in k-space
A unit cell of volume:
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• The larger the a,b and c, the smaller the unit cell volume
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Density of States as a function of k and E

• How many states are within k and k+dk?
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Redundancy

spin up and down

Density of states
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Density of States as a function of k and E

• How many states are within E and E+dE?
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Electrons and Holes in Semiconductors

Electric Field
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Electron Distribution Functions
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The probability density function of electron residing in energy 
level E can be represented by Fermi-Dirac distribution 

where EF: Fermi Energy Level
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Carrier Density Distribution of Intrinsic 
Semiconductors

=×
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Metal, Insulator, and Semiconductor

Metal Metal Insulator Semiconductor
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Work Function

• Work function is the minimum energy required to enable an electron to 
escape from the surface of solid. 

• Work function φis the energy difference between Fermi level and the 
vacuum level. 

• In semiconductors, it is more usual to use the electron affinity χ, defined as 
the energy difference between the bottom of the conduction band and the 
vacuum level.  
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Extrinsic Semiconductors
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Carrier Density Distribution of Extrinsic 
Semiconductors

n-type

p-type

=×
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p-n Junction

(a). Initially separated 
p-type and n-type 
semiconductor; 

(b) the energy band 
distortion after the 
junction is formed; 

(c) the space charge 
layers of ionized 
impurity atoms 
within the depletion 
region W; and 

(d) the potential 
distribution at the 
junction. 
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Contact Potential on p-n junction

• Contact potential V0

The electron concentration in the conduction band of p-type side 
as
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Similarly the electron concentration in the n-type side is

Since the Fermi level is constant. 
n pF F FE E E= =

0ln
p n

n
C C

p

nE E kT eV
n

 
− = =  

 
0 ln n

p

nkTV
e n

 
=   

 



12

Ming-Chang Lee, Integrated Photonic Devices

Minority Carrier Distribution

• At the temperature in the range of 100K ≤ T ≤ 400K, the majority 
carrier concentrations are equal to the doping levels, that is  
and                 , n dn N=

p aP N=

0 ln a d
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N NkTV
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• Carrier concentration difference between p- and n-type 
semiconductor 
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and
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Current flow in a forward-biased p-n junction

• The junction is said to be forward biased if the p region is connected to the 
positive terminal of the voltage source 

• The external voltage is dropped across the depletion region and lower 
down the potential barrier by (V0-V). So the diffusion current becomes larger 
than the drift current. There is a net current from the p to the n region.

• The Fermi levels are no longer aligned across the junction in light of the 
external voltage.  
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Current flow in a forward-biased p-n junction

Carrier 
densities

• Once the majority carriers flow across depletion region, they become minority 
carriers. The minority concentrations near the junction rise to new value np’ and 
pn’.  The majority carrier concentration is almost unchanged unless a large 
current injection

• Due to the minority concentration gradient, the injected current diffuses away 
from the junction. The nonlinear gradient indicates minority holes (electrons) 
are recombined with electrons (holes) that are replenished by external voltage 
source. 
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Current flow in a forward-biased p-n junction

• The injected carrier concentration at the edge of depletion region
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Current flow in a forward-biased p-n junction

As we noted in previous slides, the excess minority carrier 
concentration will decrease due to recombination
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Current flow in a forward-biased p-n junction

• The diffusion current
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Similarly, for electron diffusion current at the depletion edge
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Current flow in a reverse-biased p-n junction

0 exp 1eVJ J
kT

  = −    
V is negative
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I-V curves of p-n junction

I-V Curve

Reversed Bias Forward Bias

0 exp 1eVJ J
kT
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Zener Breakdown

•Tunnelling of carriers across the depletion region and the process 
is independent of temperature
•Doping densities must be high to occur before avalanching 
•Breakdown current is independent of voltage

Ming-Chang Lee, Integrated Photonic Devices

Metal-semiconductor Junction --- Schottky
Contact

A schottky barrier formed by contacting a metal to an n-type 
semiconductor with the metal having the larger work function: 
band diagrams (a) before and (b) after the junction is formed.

sm φφ >
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Work Function of Metal
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Electron Affinity of Semiconductor
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Metal-semiconductor Junction --- Schottky
Contact

The metal to n-type semiconductor junction shown under (a) 
forward bias and (b) reverse bias. 
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Metal-semiconductor Junction --- Ohmic
Contact

sm φφ <
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Summary of Metal-semiconductor Junction 
Contact 

Schottly
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p-N heterojunction
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n-P heterojunction
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Double Heterojunctions
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Carriers Confined in Double Heterojuncitons

It is extremely efficient to enhance electron-hole recombination
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Fundamentals of Electromagnetic Waves

• E and B are fundamental fields 
• D and H are derived from the response of the medium
• How many variables in Electromagnetic Wave?

Electrical field

Electrical displacement

Magnetic field

Magnetic induction
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