Integrated Isolators

Class: Integrated Photonic Devices
Time: Fri. 8:00am ~ 11:00am.
Classroom: ';'”F%”ZOG
Lecturer: Prof. ?FIEJIE',(Ming-Chang Lee)

Ming-Chang Lee, Integrated Photonic Devices

Optical Isolators

An optical isolator is a nonreciprocal device that transmits an
optical wave in one direction but blocks it in the reverse direction
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Optical Circulators

An optical circulator loops an optical signal through successive
ports while blocks backscattered and reflected light.
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The key components of optical isolators and circulators require the
nonreciprocal transmission which usually relies on magneto-optic

effects
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Faraday’s Effect
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Consider the equation of motion of the bound electrons in
the presence of the static magnetic field and the oscillating

electric field
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Faraday’s Effect

E is harmonic time dependence exp(jwt) and r also has the

same harmonic dependence

—m’r +kr =—eE + jower xB

The polarization P of the medium is just a constant times r,
namely, -Ner, hence the above equation becomes

(-ma” + k)P = Ne’E + joeP xB

The polarization can be solved and written as a function of E
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Faraday’s Effect

The solution of y
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Faraday’s Effect

Suppose a plane wave propagating along the z direction; that is,
E = E exp(jkz)

(The propagation direction is parallel to the magnetic field)
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Faraday’s Effect

To have nontrivial solution of E, the determinant should be zero
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Physical Meanings of Eigenvalue and
Eigenvector
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Optical Activity by Faraday’s Effect
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Optical Activity by Faraday’s Effect

This represents a linearly
polarized wave in which
the direction of
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Optical Activity by Faraday’s Effect
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Polarization-Dependent Isolators (Bulk Optics)
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The Faraday’s rotation is nonreciprocal
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Polarization-Dependent Isolators (Bulk Optics)
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Figure 7.8 Two-stage cascaded optical isolator Photonic Devices, J. M. Liu
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Polarization-Independent Isolators (Bulk Optics)
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Figure 7.9  Polarization-independent optical isolator and its principle of operation. The
I I
polarization-dependent isolator used in this design maintains input polarization direction at

the output. PBS indicates a polarizing beam splitter. 2/2 labels a half-wave plate.
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Polarization-Independent Circulators (Bulk
Optics)
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Nonreciprocal Phase Shifter

» For guide-wave optics, the Faraday’s rotation is difficult to be
realized due to phase-mismatched between TE-like and TM-like
modes
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* Nonreciprocal phase shifter is suitable to realized the integrated
isolators and circulators.
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Nonreciprocal Phase Shifter

* The nonreciprocal phase shifter exhibits in magneto-optic waveguides
which has one polarization parallel to the magnetic field

* However, the nonreciprocal phase shift only works on the polarization
perpendicular to the magnetic field
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The TM wave:
H=(0,H,,0)exp[j(z - ar)]

Ming-Chang Lee, Integrated Photonic Devices




Nonreciprocal Phase Shifter

The wave equation of magnetic field for TM waves
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The solution of Blomara =By +AB| B, : propagation constant
B =B —AB without magnetic field

To have the reciprocal birefringence, the waveguide should be asymmetric.
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Nonreciprocal Phase Shifter

For a YIG (yttrium ion garnet)
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H. Dotsch, et al., IEEE Trans. on Magnet.
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Guide-Wave Optical Isolators

Nonreciprocal phase shifter

Ay b=x + My
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Reciprocal phase shifter

Forward: A9’ =Agp, +A¢p’, . =0 —p Total transmission

Backward: A9’ =Ag.. +A¢’, . =7x —p Destructive interference
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Guide-Wave Optical Circulators

Nonreciprocal phase shifter
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