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Wavelength Dependence of Bragg Reflections

• Usually only one mode will lie within the gain bandwidth of the 
laser

Free-Space Bragg Reflection Waveguide Bragg Reflection

2 sind lθ λ= 1,2,3,...l =and
02 ( / )el nλΛ = 1,2,3,...l =and

Let θ = 90°

Effective index



2

Ming-Chang Lee, Integrated Photonic Devices

Coupling Efficiency of Wave Reflection

• The fraction of optical power that is reflected by a grating 
depends on 
– Thickness of the waveguiding layer
– Depth of the grating teeth
– Length of the grating region
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Coupling Efficiency of Wave Reflection

The coupling can be characterized by perturbation assumption
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Coupling Efficiency of Wave Reflection

For the first order (l=1) case, the reflection is essential limited to coupling 
between the forward and backward traveling wave
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L: the length of grating
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Coupling Efficiency of Wave Reflection

The reflectance and transmittance are 
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• The incident power decreases exponentially with z, as power is 
reflected into the backward travelling wave 
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Ray Scattering of Higher-Order Bragg Gratings 

l’=2

The extra path length must be integral 
multiples of the wavelength to have 
constructive scattering ray
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Ray Scattering of Higher-Order Bragg Gratings 

l’=2

For example of a second-order Bragg 
grating
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Coupling Efficiency of Wave Reflection

mA
+

mA
−

(incident wave, forward)

(reflect wave, backward)

• Generally, the strong coupling in the transverse direction by 
second-order Bragg grating is undesirable

• A first-order grating is required to yield optimum performance
• However, fabrication of the first-order grating is challenging. 
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Lasing with Distributed Feedback
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The parameter E0 is the amplitude of a single mode incident on the 
grating (stimulus)
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Lasing with Distributed Feedback
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The phase mismatching term,  

0β β β∆ = − Where β0 is the propagation constant at the Bragg wavelength

The oscillation condition for the DFB laser corresponds to the case for 
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Lasing with Distributed Feedback

In general, numerical method should be used for exactly solving g and Δβ
simultaneously. A special case of solution of lasing frequency  
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It is interesting to note that no oscillation can occur at exactly the Bragg frequency 
ω0. The mode spacing  
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However, only the lasing modes close to the Bragg frequency have the smallest 
threshold gain. Therefore, in a normal operating condition, the spectral feature of 
DFB laser often consists of the two longitudinal modes  
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Separate Confinement Heterostructure Lasers

• Lattice damage is usually created during the grating fabrication. 
It is better to separate the active layer out of the grating layer
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Distributed Bragg Reflection Lasers

• Two Bragg gratings are employed at both ends of the laser and 
outside of the electrically-pumped active region

• To achieve a single longitudinal mode, one distributed reflector
must have narrow bandwidth, high reflectivity at the lasing 
wavelength

Active Region

L1

L2 La

Laser 
Emission
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Distributed Bragg Reflection Lasers

Active Region

L1

L2 La

Laser 
Emission
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The Transmittivity:

The Reflectivity:

For the passive grating region,
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Loss of grating(complex)
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Distributed Bragg Reflection Lasers

Active Region
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Since the reflectivity is complex number, we can consider an effective cavity length
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Distributed Bragg Reflection Lasers

Active Region
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The longitudinal mode spacing between the m-th and (m±1)-th lasing mode is 
approximately 
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Wavelength Selectability

• Compared with Fabry-Perot lasers, DFB or DBR laser is easy to 
achieve single-longitudinal-mode operation because the 
spacing between the m-th and the (m±1)-th mode is generally 
large and the reflectivity is mode-dependent


