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Wavelength Dependence of Bragg Reflections

Free-Space Bragg Reflection Waveguide Bragg Reflection
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* Usually only one mode will lie within the gain bandwidth of the

laser
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Coupling Efficiency of Wave Reflection
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* The fraction of optical power that is reflected by a grating
depends on
— Thickness of the waveguiding layer
— Depth of the grating teeth
— Length of the grating region
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Coupling Efficiency of Wave Reflection
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The coupling can be characterized by perturbation assumption
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Coupling Efficiency of Wave Reflection

2:0 4" —(incident wave, forward) z=L
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For the first order (1=1) case, the reflection is essential limited to coupling
between the forward and backward traveling wave

cosh [K(z - L)]
cosh(kL)

and ()= 4, (0) X STHE=D)]

4,7 (2)=4,7(0) |k|  cosh(xL)

L: the length of grating
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Coupling Efficiency of Wave Reflection
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The reflectance and transmittance are
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* The incident power decreases exponentially with z, as power is
reflected into the backward travelling wave
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Ray Scattering of Higher-Order Bragg Gratings
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For higher-order gratings with periodicity
A
azlh
2n

e

>0

The extra path length must be integral
multiples of the wavelength to have
constructive scattering ray
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Ray Scattering of Higher-Order Bragg Gratings
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For example of a second-order Bragg
grating
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Coupling Efficiency of Wave Reflection
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Generally, the strong coupling in the transverse direction by
second-order Bragg grating is undesirable

A first-order grating is required to yield optimum performance
However, fabrication of the first-order grating is challenging.
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Lasing with Distributed Feedback
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In a gain medium (gain:g),

Kk exp(jB,z)sinh[S(L - z)]
(g-j0\B)sinh(SL) ~S cosh (SL)
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The parameter E; is the amplitude of a single mode incident on the
grating (stimulus)
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Lasing with Distributed Feedback
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The phase mismatching term,

AB=pB-[fB Where B, is the propagation constant at the Bragg wavelength

The oscillation condition for the DFB laser corresponds to the case for
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That is, 0

(g - jAB)sinh(SL) = S cosh(SL)
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Lasing with Distributed Feedback

In general, numerical method should be used for exactly solving g and A
simultaneously. A special case of solution of lasing frequency
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It is interesting to note that no oscillation can occur at exactly the Bragg frequency
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However, only the lasing modes close to the Bragg frequency have the smallest
threshold gain. Therefore, in a normal operating condition, the spectral feature of
DFB laser often consists of the two longitudinal modes
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Separate Confinement Heterostructure Lasers

» Lattice damage is usually created during the grating fabrication.
-1t is better to separate the active layer out of the grating layer
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Distributed Bragg Reflection Lasers
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+ Two Bragg gratings are employed at both ends of the laser and
outside of the electrically-pumped active region

* To achieve a single longitudinal mode, one distributed reflector
must have narrow bandwidth, high reflectivity at the lasing
wavelength
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Distributed Bragg Reflection Lasers
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For the passive grating region,
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The Transmittivity: 7 = where V° =K +(a +jA8)2

The Reflectivity: R =

(complex) Loss of grating

Distributed Bragg Reflection Lasers
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Since the reflectivity is complex number, we can consider an effective cavity length
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Distributed Bragg Reflection Lasers

R, » R
af = el
) Ly a L, a : '
p type diffused
(P or implanted layer
Active Region 4 Gayy. Al As n
. N Gayy-y)AlyAs n
Lgse.r S>> 4 Gag.nhLAs n
Emission
GaAs Substrate n*
=
y<x -

The longitudinal mode spacing between the m-th and (m%1)-th lasing mode is
approximately
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Wavelength Selectability
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+ Compared with Fabry-Perot lasers, DFB or DBR laser is easy to
achieve single-longitudinal-mode operation because the
spacing between the m-th and the (m+1)-th mode is generally
large and the reflectivity is mode-dependent
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