Background of Wave Optics

Class: Integrated Photonic Devices Time: Fri. 8:00am ~ 11:00am.

Classroom: 資電206

Lecturer: Prof. 李明昌(Ming-Chang Lee)

Fundamentals of Electromagnetic Waves

- E and B are fundamental fields
- · D and H are derived from the response of the medium
- How many variables in Electromagnetic Wave?

Polarization and Magnetization

The relations between D,E and B,H

$$\begin{cases} \overrightarrow{D}(r,t) = \varepsilon_0 \overrightarrow{E}(r,t) + \overrightarrow{P}(r,t) \\ \overrightarrow{B}(r,t) = \mu_0 \overrightarrow{H}(r,t) + \mu_0 \overrightarrow{M}(r,t) \end{cases}$$

P(r,t): polarization (electric polarization)

Dipole

 $\mathbf{M}(\mathbf{r},\mathbf{t})$: magnetization (magnetic polarization)

Current Loop

$$\begin{cases} & \varepsilon_0 = \frac{1}{36\pi} \times 10^{-9} \text{ F/m} \\ & \text{Electric permittivity of free space} \end{cases}$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$$
 Magnetic permeability of free space

Basic Vector Operators

The Curl of A in Cartesian coordinates

$$\nabla \times A = \hat{e}_x \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{e}_y \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{e}_z \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

$$= \begin{vmatrix} \hat{e}_x & \hat{e}_y & \hat{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$$
Vector \bigsim Vector

The Divergence of A in Cartesian coordinates

$$\nabla \cdot A = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_x}{\partial z}$$
 Vector \longrightarrow Scalar

General Maxwell's Equations

Maxwell Equation:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 Faraday's Law

$$\nabla \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t} \quad \text{Ampere's Law}$$

$$\nabla \cdot \overrightarrow{D} = \rho \quad \text{Coulomb's Law}$$

$$\nabla \cdot \overrightarrow{B} = 0 \quad \text{Absence of free magnetic monopole}$$

$$\nabla \cdot \overrightarrow{D} = \rho$$
 Coulomb's Law

$$\nabla \cdot \vec{B} = 0$$
 Absence of free magnetic monopole

Plus:

$$\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$$
 Conservation of charges

 $\rho(r,t)$: Charge density (C/m³)

 $\vec{J}(r,t)$: Current density (A/m²)

Maxwell's Equations in Dielectric Medium

In a medium free of source, J = 0 and $\rho = 0$. Then, Maxwell's equations are

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 (1

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t}$$

$$\nabla \cdot \vec{D} = 0$$
(2)
$$\nabla \cdot \vec{D} = 0$$
(3)

$$\nabla \cdot \vec{D} = 0 \tag{3}$$

$$\nabla \cdot \vec{B} = 0 \tag{4}$$

At optical frequency,

$$\overrightarrow{B}(r,t) = \mu_0 \overrightarrow{H}(r,t) + \mu_0 \overrightarrow{M}(r,t) = \mu_0 \overrightarrow{H}(r,t)$$

Magnetization is not induced by optical fields but it can be induced by external magnetic sources such as magnets

Wave Equation

(1) and (2) are strongly coupled. To decouple the two curl eqs.

Wave Equation

$$\nabla \times \nabla \times \overrightarrow{E} = -\mu_0 \frac{\partial}{\partial t} \frac{\partial \overrightarrow{D}}{\partial t} = -\mu_0 \frac{\partial^2 \overrightarrow{D}}{\partial t^2}$$

$$\boxed{\overrightarrow{D}(r,t) = \varepsilon_0 \overrightarrow{E}(r,t) + \overrightarrow{P}(r,t)}$$

$$\nabla \times \nabla \times \overrightarrow{E} + \frac{1}{c^2} \frac{\partial^2 \overrightarrow{E}}{\partial t^2} = -\mu_0 \frac{\partial^2 \overrightarrow{P}}{\partial t^2}$$
Wave Equation
$$V = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \sim 3 \times 10^8 \, \text{m/s}$$

Electric Polarization

For linear medium,

 $\varepsilon = \varepsilon_0(I + \chi)$ is the electric permittivity tensor χ is the electric susceptibility tensor

Electric Polarization

Anisotropy

$$\varepsilon = \varepsilon_0 (I + \chi)$$

permittivity tensor

Isotropy

$$\varepsilon = \varepsilon_0 (1 + \chi)$$

permittivity scalar

Complex Expression of Optical Field

- Optical fields are harmonic fields which vary with time sinusoidally.
- It is convenient to define the harmonic fields as a complex fields

For example,

$$\cos(\omega t) = \frac{1}{2} \exp(j\omega t) + \frac{1}{2} \exp(-j\omega t) = \frac{1}{2} \exp(j\omega t) + \frac{1}{2} \exp^*(j\omega t)$$

$$\begin{cases} \vec{E}(r,t) = \frac{1}{2} \left(\vec{E}(r,t) + \vec{E}^*(r,t) \right) = \frac{1}{2} \left(\vec{E}(r,t) + c.c \right) = \text{Re}(\vec{E}(r,t)) \\ \vec{P}(r,t) = \frac{1}{2} \left(\vec{P}(r,t) + \vec{P}^*(r,t) \right) = \frac{1}{2} \left(\vec{P}(r,t) + c.c \right) = \text{Re}(\vec{P}(r,t)) \\ \vec{D}(r,t) = \frac{1}{2} \left(\vec{D}(r,t) + \vec{D}^*(r,t) \right) = \frac{1}{2} \left(\vec{D}(r,t) + c.c \right) = \text{Re}(\vec{D}(r,t)) \end{cases}$$

$$\vec{\mathbf{D}}(r,t) = \int_{-\infty}^{\infty} dr \int_{-\infty}^{t} dt' \varepsilon(r - r', t - t') \cdot \vec{\mathbf{E}}(r',t')$$

Wave equation is hold for complex expression

Wave Propagation in Linear, Isotropic and Homogeneous Medium

General monochromatic wave: $\vec{\mathbf{E}}(r,t) = \vec{\mathbf{E}}(r) \exp(-j\omega t)$

For monochromatic waves in isotropic, homogeneous and spacenondispersive medium,

$$\begin{split} \overrightarrow{\mathbf{D}}(r,t) &= \int_{-\infty}^{\infty} dr' \int_{-\infty}^{t} dt' \delta(r-r') \varepsilon(t-t') \cdot \overrightarrow{\mathbf{E}}(r') \exp(-j\omega t') \\ &= \int_{-\infty}^{\infty} \overrightarrow{\mathbf{E}}(r') \delta(r-r') dr' \cdot \exp(-j\omega t) \int_{-\infty}^{t} \varepsilon(t-t') \exp[j\omega(t-t')] dt' \\ &= \varepsilon(\omega) \overrightarrow{\mathbf{E}}(r) \exp(-j\omega t) \end{split}$$

$$= \varepsilon(\omega) \overrightarrow{\mathbf{E}}(r) \exp(-j\omega t)$$

$$= \varepsilon(\omega) \overrightarrow{\mathbf{E}}(r,t)$$

$$\nabla \times \nabla \times \overrightarrow{\mathbf{E}} + \frac{1}{C^2} \frac{\partial^2 \overrightarrow{\mathbf{E}}}{\partial t^2} = -\mu_0 \frac{\partial^2 \overrightarrow{\mathbf{P}}}{\partial t^2}$$

$$\nabla \times \nabla \times \overrightarrow{\mathbf{E}} + \mu_0 \varepsilon(\omega) \cdot \frac{\partial^2 \overrightarrow{\mathbf{E}}}{\partial t^2} = 0$$

Wave Propagation in Linear, Isotropic and Homogeneous Medium

$$\nabla \times \nabla \times \vec{\mathbf{E}} = \nabla (\nabla \cdot \vec{\mathbf{E}}) - \nabla^2 \vec{\mathbf{E}}$$

$$(1) \qquad (2)$$

$$(1) \qquad \nabla \cdot \vec{\mathbf{E}} = -\vec{\mathbf{E}} \cdot \frac{\nabla \varepsilon}{\varepsilon} (\nabla \cdot \mathbf{D} = 0)$$

$$= 0 (\nabla \varepsilon = 0)$$

(2)
$$\nabla^2 \vec{\mathbf{E}} = \nabla^2 \mathbf{E}_x \hat{x} + \nabla^2 \mathbf{E}_y \hat{y} + \nabla^2 \mathbf{E}_z \hat{z} \qquad \nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\nabla \times \nabla \times \vec{\mathbf{E}} + \mu_0 \varepsilon(\omega) \cdot \frac{\partial^2 \vec{\mathbf{E}}}{\partial t^2} = 0$$

$$n = \sqrt{\frac{\varepsilon}{\varepsilon_0}} \quad \text{Refractive index}$$

$$\nabla^2 \vec{\mathbf{E}} - \mu_0 \varepsilon(\omega) \cdot \frac{\partial^2 \vec{\mathbf{E}}}{\partial t^2} = 0 \qquad \blacktriangleright \qquad \nabla^2 \vec{\mathbf{E}} - \frac{n(\omega)^2}{c^2} \cdot \frac{\partial^2 \vec{\mathbf{E}}}{\partial t^2} = 0$$

Wave Propagation in Linear, Isotropic and Homogeneous Medium

$$\nabla^{2} \vec{\mathbf{E}}(r,t) - \frac{n(\omega)^{2}}{c^{2}} \cdot \frac{\partial^{2} \vec{\mathbf{E}}(r,t)}{\partial t^{2}} = 0$$

$$\downarrow \qquad \vec{\mathbf{E}}(r,t) = \vec{\mathbf{E}}(r) \exp(-j\omega_{0}t)$$

$$\nabla^{2} \vec{\mathbf{E}}(r) + \frac{n(\omega_{0})^{2}}{c^{2}} \omega_{0}^{2} \cdot \vec{\mathbf{E}}(r) = 0$$

$$\downarrow \qquad k_{0} \equiv \frac{\omega_{0}}{c} = \frac{2\pi}{\lambda_{0}}$$

$$\nabla^{2} \vec{\mathbf{E}}(r) + n(\omega_{0})^{2} k_{0}^{2} \cdot \vec{\mathbf{E}}(r) = 0$$
(Helmholtz equations)

We only consider the spatial terms

Plane Wave in Isotropic and Homogeneous Medium

Solution of plane wave:

- If the constant polarization (E_0) is real vector, the wave is linearly polarized
- Otherwise, the wave is circularly polarized or elliptically polarized

Summary of Wave Equation in Optical Domain

 $\nabla \times \nabla \times \vec{E} + \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = -\mu_0 \frac{\partial^2 \vec{P}}{\partial t^2}$

Isotropic, linear and Homogeneous Medium

$$\nabla \times \nabla \times \vec{\mathbf{E}} + \mu_0 \varepsilon(\omega) \cdot \frac{\partial^2 \vec{\mathbf{E}}}{\partial t^2} = 0$$

Monochromatic Waves

$$\nabla^2 \vec{\mathbf{E}}(r) + n(\omega)^2 k_0^2 \cdot \vec{\mathbf{E}}(r) = 0$$

Dielectric Medium

Polarization of Light

Consider a monochromatic plane wave propagating in z direction

$$\vec{E} = \overrightarrow{E_0} \exp(jkz)$$

where \mathbf{E}_0 is constant and lies on the x-y plane. There fore \mathbf{E}_0 can be represented by the linear combination of two orthogonal unit vector x and y.

$$\overrightarrow{E_0} = \hat{x}E_x + \hat{y}E_y = \hat{x}|E_x|e^{j\phi_x} + \hat{y}|E_y|e^{j\phi_y}$$

The polarization only depends on the phase difference and the magnitude ratio between the two field components.

Polarization of Light

We define

$$\varphi = \phi_{v} - \phi_{x}, \quad -\pi < \varphi \le \pi$$

and

$$\alpha = \tan^{-1} \frac{\left| E_y \right|}{\left| E_x \right|}, \quad 0 \le \alpha \le \frac{\pi}{2}$$

Because only the relative phase φ matters, we can set φ $_{\rm x}{\rm =0,}$ and take ρ to be real, then

$$\overrightarrow{E_0} = \rho \cdot \hat{e} \quad \text{with} \quad \hat{e} = \hat{x} \cos \alpha + \hat{y} e^{j\varphi} \sin \alpha \qquad \underbrace{\sum_{x}^{\rho}}_{E_x} E_y$$

$$\rho = \sqrt{|E_x|^2 + |E_y|^2}$$

Polarization of Light

The space- and time-dependent real field

$$E(z,t) = 2\rho [\hat{x}\cos\alpha\cos(kz - \omega t) + \hat{y}\sin\alpha\cos(kz - \omega t + \varphi)]$$

Linear polarization: $\varphi = 0$ or π

$$E(z,t) = 2\rho \cdot \hat{e} \cos(kz - \omega t)$$

where

$$\hat{e} = \hat{x}\cos\alpha + \hat{y}\sin\alpha$$

Polarization of Light

Circular polarization: $\varphi = \frac{\pi}{2}$ or $-\frac{\pi}{2}$

or
$$-\frac{\pi}{2}$$
 Counterclockwise

and
$$\alpha = \frac{\pi}{4} \longrightarrow |E_x| = |E_y| = \frac{\rho}{\sqrt{2}}$$

Case I:
$$\varphi = \frac{\pi}{2}$$
 (Left-circular polarization)

$$E(z,t) = \text{Re}\left\{\sqrt{2}\rho \cdot \hat{e}_{+} \exp\{j(kz - \omega t)\}\right\}$$
$$= \sqrt{2}\rho \cdot (\hat{x}\cos(kz - \omega t) - \hat{y}\sin(kz - \omega t))$$

where

$$\widehat{e}_{+} = \frac{\widehat{x} + j\widehat{y}}{\sqrt{2}}$$

Polarization of Light

Case II:
$$\varphi = -\frac{\pi}{2}$$
 (Right-circular polarization)

$$E(z,t) = \text{Re}\left\{\sqrt{2}\rho \cdot \hat{e}_{-} \exp\{j(kz - \omega t)\}\right\}$$
$$= \sqrt{2}\rho \cdot (\hat{x}\cos(kz - \omega t) + \hat{y}\sin(kz - \omega t))$$

Clockwise

where

$$\hat{e}_{+} = \frac{\hat{x} - j\hat{y}}{\sqrt{2}}$$

Polarization of Light

Elliptical polarization: φ : otherwise

Boundary Conditions

- The tangential components of E and H must be continuous at the boundary
- The normal components of D and B must be continuous at the boundary

Photon Nature of Light

- The energy of a photon is determined by its frequency $\,\nu$ or, equivalently, its angular frequency $\,\omega$
- \bullet The momentum of a photon is determined by its frequency $\,\lambda$ or, equivalently, its angular frequency k

speed:
$$c = \lambda v$$

energy:
$$hv = \hbar\omega = pc$$

momentum:
$$p = \frac{hv}{c} = \frac{h}{\lambda}$$

Thumb of rule to calculate the photon energy for a given wavelength

$$E = hv = \frac{1.2398}{\lambda} \mu m \cdot eV$$