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Abstract

For n given events in a probability space and 1 < r < n, we first give a Bonferroni-type formula
and a class of sharp Bonferroni-type inequalities for the probability that exactly r out of the n given
events occur and for the probability that at least r out of the n given events occur. Then we show that
our Bonferroni-type formulae and inequalities serve as a unified menthod for obtaining the well-known
Jordan’s formula, the generalized inclusion-exclusion principle, and the classical Bonferroni inequalities.
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1 Introduction

Let (Q,.A, P) be a probability space, where €2 is the sample space underlying the probability space, A is
a o-algebra of subsets of the sample space €, and P is a probability measure on the o-algebra A. Let
A1, Ag, ... A, be events in A. Let [n] = {1,2,...,n} and let A; = N;er4; be the event that the events
A;, i € I, occur for all I C [n] such that I # 0. Let Sy be the kth binomial moment of the events
Ay, As, ..., A, that is given by [1]

Se= Y P(Ap), for 1<k <n, (1)
IC[n]
|I|=Fk

Let E,. and F,. be the events that exactly r events and at least r events, respectively, out of the n events
Ay, As, ..., A, occur for r > 1. Note that the events Ey, B, ..., E, are pairwise disjoint and F,. = Uj}_ Ey
for 1 <r <mn. For r > n, it is clear that P(E,) = P(F,) = 0. For 1 <r < n, the probability P(E,) of the
event E, can be expressed in terms of the binomial moments S, S;41,...,95, as given in the well-known
Jordan’s formula (1867) as follows [2]:

n

P(E,) =Y (-1)* (’j) Sy, for 1 <r < n. (2)

k=r
For 1 < r < n, the probability P(F,.) of the event F,. can also be expressed in terms of the binomial moments

SpySr41y---,5, as given in the generalized inclusion-exclusion principle as follows [3]:

n

P(F,) = 2(1)’”(1:_ 1)Sk, for 1 <r <n. (3)

1
k=r

For the special case that r = 1, the generalized inclusion-exclusion principle in (3) reduces to the classical
inclusion-exclusion principle for the probability of the union U} ; A; of the events A;, As, ..., A, (note that



F1 =U A;) as follows [4]-[6]:

P, A) = S 1Sy (4)

k=1

Note that the classical inclusion-exclusion principle in (4) originates from the idea of Abraham de Moivre
(1718) [4], and is also known as Da Silva’s formula (1854) [5] or Sylvester’s formula (1883) [6].

To compute the probability P(E,.) by using (2) or the probability P(F,.) by using (3), we need to compute
the binomial moments S, S;11,...,S, as given in (1). However, since it is clear that the number of terms
in (1) grows exponentially with n, in practice such an approach for the computation of P(E,) or P(F})
may not be feasible as n becomes large. In many realistic applications, a few binomial moments are either
known/given or can be computed/estimated from historical data. By using the binomial moments available,
say Sy, Sy41, ..., Sm are available, where 1 < r < m < n, the classical Bonferroni inequalities (1936) [7] (also
see [1]) give upper and lower bounds for P(E,) and P(F},) in terms of S,, S;y1,...,Sm as follows:

P(E,) < Zg:r(—l)’;j“ (Z)Sk, %f m-—r %s even, 5)
>3 (=D)FT(T) Sk, if m — 7 is odd,

and

< S ()R (P Sk, if mo— 1 is even,

6
>3 (—1)Fr (*D) Sy, if m— 1 is odd. (6)

|

Note that for the special case that » = 1, the Bonferroni inequalities in (6) reduce to the classical inclusion-
exclusion inequalities for the probability P(U;A4;) of the union U ; 4, of the events Ay, As, ..., A, [4]-[6].

In this paper, we present a unified approach to Jordan’s formula in (2), the generalized inclusion-exclusion
principle in (3), and the classical Bonferroni inequalities in (5) and (6). We first give a Bonferroni-type
formula for the probability P(E,), and show that it subsumes Jordan’s formula in (2) as a special case.
Our formula for P(E,) leads to a class of sharp Bonferroni-type inequalities for P(E,.), which improve on
the Bonferroni inequalities in (5). Furthermore, our sharp inequalities for P(F,) not only subsume the
Bonferroni inequalities in (5) as a special case, but also give rise to a necessary and sufficient condition for
the inequalities in (5) to hold with equality. Then we give a Bonferroni-type formula for the probability
P(F,) that subsumes the generalized inclusion-exclusion principle in (3) as a special case. We also give a
class of sharp Bonferroni-type inequalities for P(F;.), which not only improve on and subsume as a special
case the Bonferroni inequalities in (6), but also give rise to a necessary and sufficient condition for the
inequalities in (6) to hold with equality.

2 The Unified Approach

In the following theorem, we give our Bonferroni-type formula and a class of sharp Bonferroni-type inequal-
ities for the probability P(F,.) of the event E,.

Theorem 1 Suppose 1 <r <m <n.

(i) The probability P(E,.) of the event E,. that exactly r events out of the n events Ay, As, ..., A, occur
can be expressed in terms of Sy, Sra1,.-.,Sm and P(Ey11), P(Epnis), ..., P(E,) as given in the following
Bonferroni-type formula:

P =3 0 (F)ser com S (00 e ™

k=r {=m-+1



(i) Let [m + 1,n) = {m+1,m+2,...,n}. For each J C [m + 1,n|, the probability P(E,) of the event
E,. can be bounded as given in the following Bonferroni-type inequalities:

<3 (DR ( )Sk = > ues (5 )(2 " 1)P(Ee)7 if m —r is even,
P(E) {Z S ome (—1)k (T)Sk + 2 e (T) (ZmiTl)P(Eg), if m —r is odd, (8)

where the inequalities in (8) hold with equality if and only if P(Ey) =0 for all £ € [m + 1,n]\J.

Remark 2 (i) Jordan’s formula in (2) is a special case of our Bonferroni-type formula in (7). To see this,
consider the special case that m = n — 1. Then we see from P(E,) = P(A},)) = S, that (7) reduces to (2)
as follows:

P(E,) = ”Z_l(—mk—r (f) Sy + (=)™ (:f) P(E,) = i(—l)k—r (f) Sy..

k=r k=r

Alternatively, consider the special case that A; = @) for all m + 1 < i < n. Then we have P(F;) = 0 for all
m+1 < ¢ <mn, and hence (7) reduces to

P(E,) = i(—nk—’“ (f) Sh. (9)

By removing all the terms in the Sy’s in (9) involving A.41, Amta, ..., Ay that have no contributions to
the values of the Si’s in (9), we obtain (2) (with n in (2) replaced by m).

(ii) It is easy to see from P(Ey) > for all 1 < ¢ < n that our Bonferroni-type inequalities in (8) improve
on the classical Bonferroni inequalities in (5). Furthermore, for the special case that J = (), our inequalities
in (8) reduce to the inequalities in (5), and the inequalities in (5) hold with equality if and only if P(E;) =0
for all m 4+ 1 < ¢ <, or, equivalently, P(Fp,+1) = 0.

(Proof of Theorem 1) (i) Let B; = (NjesA;) N (NjcmpsAS) be the event that exactly the events
Aj, j € J, among the events Ay, Ay, ..., A, occur for all J C [n]. It is clear that the events By, J C [n],
are pairwise disjoint and U, By = Q. It is also clear that A; = Urc e By = U?:\I\ Urciciny,|g=¢ By
for all I C [n] such that I # 0, and Ey = U cn),|s1=¢By for all 1 < £ < n.

In our proof, we will use the following identity from [1] (which can be obtained by first writing (:f) (k)
l—r 1) (Z—r—

(f) (2_7) and then using binomial theorem for the case that m = ¢, and writing (é 7") = (k_r_l

k—r
for r +1 < k < m and telescoping for the case that m < ¢ —1):

0, ifr<m=1¢

i(—l)k’r (ﬁ) (i) =<1, ifr=m=1¢, (10)

(=)™, ifm < -1,
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JC[n] L=r+1 JC[n] £=m+1 JC[n]
|J|=r |J|=¢ |J|=¢
S AY !
= P(E)+ (- P(E
( 7)+( ) f=m+1 <7")< m-—r ) ( [)7

where the first equality follows from (1) and P(Ar) = P(Up_ \Urcscn),|g1=¢Brs) = Ei_ yX1cscn), =L (Br)
for all I C [n] such that I # ), the third equality follows from (10), and the last equality follows from
P(E)) = P(UJQ[TL],|J|:ZBJ) = ZJg[nMJ‘:gP(BJ) forall 1 </ <n.

(ii) Since P(Ey) > for all 1 < ¢ < n, it is clear that (ii) follows from (i). |

In the following theorem, we give our Bonferroni-type formula and a class of sharp Bonferroni-type
inequalities for the probability P(F;.) of the event F..

Theorem 3 Suppose 1 <r < m <n.

(i) The probability P(F,.) of the event F, that at least r events out of the n events Ay, As, ..., A, occur
can be expressed in terms of Sy, Sri1,...,Sm and P(Ey11), P(Epnqi2), ..., P(E,) as given in the following
Bonferroni-type formula:

P(F,) = é(_l)k—r <I: ~ )Sk 4 (=1)mrHl p 2:;1;;” (r B 1) < >P(Ee) (12)

(ii) For each J C [m+1,n], the probability P(F,) of the event F, can be bounded as given in the following
Bonferroni-type inequalities:s:

< S (D (20) Sk = Tnes Do (,20) () P(ER), if m—r s even,
LG R = S el St "

where the inequalities in (13) hold with equality if and only if P(Ey) =0 for all £ € [m + 1,n]\J.

We make the following remark that is similar to Remark 2:

Remark 4 (i) The generalized inclusion-exclusion principle in (3) is a special case of our Bonferroni-type
formula in (12).

(ii) Our Bonferroni-type inequalities in (13) improve on the classical Bonferroni inequalities in (6). Fur-
thermore, our inequalities in (13) subsume the inequalities in (6).as a special case, and the inequalities in
(6) hold with equality if and only if P(F,,4+1) = 0.

We need the following lemma for the proof of Theorem 3.

Lemma 5 Suppose 1 <r < m < {. Then we have

S () £ (1))

=m



Proof. We prove Lemma 5 by induction on £. First consider the base case that £ = 1. Suppose 1 < r <
m < {. Then we have r = m = ¢ = 1, and hence the LHS of (14) is equal to 1. Thus, Lemma 5 holds for the
base case that £ = 1.

Now assume as the induction hypothesis that Lemma 5 holds for some /—1 > 1. Suppose 1 <r < m < /.
We consider the following three cases:

Case 1: r = m = {. In this case, the LHS of (14) is equal to 1. Thus, Lemma 5 holds in this case.

Case 2: r < m = £. In this case, we have

e ()6 - mem ()6 sz ()

-1 , B
= 3 (~pF-D <Tli 1) (5 y 1) +1=0+1=1,

k'=r—1

(]

where the first equality follows from m = ¢, (f;) = (2:11) + (tl) forr <k</{—1,and (ﬁ) = ( ), the second
equality follows from the induction hypothesis, and the third equality follows from (10). Thus, Lemma 5
holds in this case.

Case 3: m < ¢ — 1. In this case, we have

S0 (2)0)
B ()0 )-Eor ()

T

:Zjluf'“” (r’i) (%1) + (l +(-1)m Z ( - 1> (:1 ))
4

u=m

_ (c1)m-D=(-) (ﬁ—i) <(£(T_nl)1—)(r(_r1)1_)1) T <1—|— )" uz;i (r 1) (u_:>>

=14 ()" § (r : 1) C;L—:)

where the second equality follows from the induction hypothesis and the third equality follows from (10).

Thus, Lemma 5 holds in this case. [ ]
(Proof of Theorem 3) Let B be given as in the proof of Theorem 1 for all J C [n]. Then we have

S (B0 )s

k=r

L (R (D)) e 2 P (e (o)) e
m n = u—r

:;JJggl.p(BJHZ;U% (1 mr;(r_lxm_r))m&)

= P(F,) + (-1 Zéﬂ; <7~ : 1) (:;__:) P(Ey),

where the first equality follows from the same arguments leading to (11) and the second equality follows
from (14) in Lemma 5 and and P(F,) = X}_ P(Ey). |
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