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Abstract

For n given events in a probability space and 1 ≤ r ≤ n, we first give a Bonferroni-type formula
and a class of sharp Bonferroni-type inequalities for the probability that exactly r out of the n given
events occur and for the probability that at least r out of the n given events occur. Then we show that
our Bonferroni-type formulae and inequalities serve as a unified menthod for obtaining the well-known
Jordan’s formula, the generalized inclusion-exclusion principle, and the classical Bonferroni inequalities.
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1 Introduction

Let (Ω,A, P ) be a probability space, where Ω is the sample space underlying the probability space, A is
a σ-algebra of subsets of the sample space Ω, and P is a probability measure on the σ-algebra A. Let
A1, A2, . . . , An be events in A. Let [n] = {1, 2, . . . , n} and let AI = ∩i∈IAi be the event that the events
Ai, i ∈ I, occur for all I ⊆ [n] such that I ̸= ∅. Let Sk be the kth binomial moment of the events
A1, A2, . . . , An that is given by [1]

Sk =
∑
I⊆[n]
|I|=k

P (AI), for 1 ≤ k ≤ n. (1)

Let Er and Fr be the events that exactly r events and at least r events, respectively, out of the n events
A1, A2, . . . , An occur for r ≥ 1. Note that the events E1, E2, . . . , En are pairwise disjoint and Fr = ∪n

ℓ=rEℓ

for 1 ≤ r ≤ n. For r > n, it is clear that P (Er) = P (Fr) = 0. For 1 ≤ r ≤ n, the probability P (Er) of the
event Er can be expressed in terms of the binomial moments Sr, Sr+1, . . . , Sn as given in the well-known
Jordan’s formula (1867) as follows [2]:

P (Er) =

n∑
k=r

(−1)k−r

(
k

r

)
Sk, for 1 ≤ r ≤ n. (2)

For 1 ≤ r ≤ n, the probability P (Fr) of the event Fr can also be expressed in terms of the binomial moments
Sr, Sr+1, . . . , Sn as given in the generalized inclusion-exclusion principle as follows [3]:

P (Fr) =

n∑
k=r

(−1)k−r

(
k − 1

r − 1

)
Sk, for 1 ≤ r ≤ n. (3)

For the special case that r = 1, the generalized inclusion-exclusion principle in (3) reduces to the classical
inclusion-exclusion principle for the probability of the union ∪n

i=1Ai of the events A1, A2, . . . , An (note that
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F1 = ∪n
i=1Ai) as follows [4]–[6]:

P (∪n
i=1Ai) =

n∑
k=1

(−1)k−1Sk. (4)

Note that the classical inclusion-exclusion principle in (4) originates from the idea of Abraham de Moivre
(1718) [4], and is also known as Da Silva’s formula (1854) [5] or Sylvester’s formula (1883) [6].

To compute the probability P (Er) by using (2) or the probability P (Fr) by using (3), we need to compute
the binomial moments Sr, Sr+1, . . . , Sn as given in (1). However, since it is clear that the number of terms
in (1) grows exponentially with n, in practice such an approach for the computation of P (Er) or P (Fr)
may not be feasible as n becomes large. In many realistic applications, a few binomial moments are either
known/given or can be computed/estimated from historical data. By using the binomial moments available,
say Sr, Sr+1, . . . , Sm are available, where 1 ≤ r ≤ m ≤ n, the classical Bonferroni inequalities (1936) [7] (also
see [1]) give upper and lower bounds for P (Er) and P (Fr) in terms of Sr, Sr+1, . . . , Sm as follows:

P (Er)

{
≤
∑m

k=r(−1)k−r
(
k
r

)
Sk, if m− r is even,

≥
∑m

k=r(−1)k−r
(
k
r

)
Sk, if m− r is odd,

(5)

and

P (Fr)

{
≤
∑m

k=r(−1)k−r
(
k−1
r−1

)
Sk, if m− r is even,

≥
∑m

k=r(−1)k−r
(
k−1
r−1

)
Sk, if m− r is odd.

(6)

Note that for the special case that r = 1, the Bonferroni inequalities in (6) reduce to the classical inclusion-
exclusion inequalities for the probability P (∪n

i=1Ai) of the union ∪n
i=1Ai of the events A1, A2, . . . , An [4]–[6].

In this paper, we present a unified approach to Jordan’s formula in (2), the generalized inclusion-exclusion
principle in (3), and the classical Bonferroni inequalities in (5) and (6). We first give a Bonferroni-type
formula for the probability P (Er), and show that it subsumes Jordan’s formula in (2) as a special case.
Our formula for P (Er) leads to a class of sharp Bonferroni-type inequalities for P (Er), which improve on
the Bonferroni inequalities in (5). Furthermore, our sharp inequalities for P (Er) not only subsume the
Bonferroni inequalities in (5) as a special case, but also give rise to a necessary and sufficient condition for
the inequalities in (5) to hold with equality. Then we give a Bonferroni-type formula for the probability
P (Fr) that subsumes the generalized inclusion-exclusion principle in (3) as a special case. We also give a
class of sharp Bonferroni-type inequalities for P (Fr), which not only improve on and subsume as a special
case the Bonferroni inequalities in (6), but also give rise to a necessary and sufficient condition for the
inequalities in (6) to hold with equality.

2 The Unified Approach

In the following theorem, we give our Bonferroni-type formula and a class of sharp Bonferroni-type inequal-
ities for the probability P (Er) of the event Er.

Theorem 1 Suppose 1 ≤ r ≤ m ≤ n.
(i) The probability P (Er) of the event Er that exactly r events out of the n events A1, A2, . . . , An occur

can be expressed in terms of Sr, Sr+1, . . . , Sm and P (Em+1), P (Em+2), . . . , P (En) as given in the following
Bonferroni-type formula:

P (Er) =

m∑
k=r

(−1)k−r

(
k

r

)
Sk + (−1)m−r+1

n∑
ℓ=m+1

(
ℓ

r

)(
ℓ− r − 1

m− r

)
P (Eℓ). (7)
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(ii) Let [m + 1, n] = {m + 1,m + 2, . . . , n}. For each J ⊆ [m + 1, n], the probability P (Er) of the event
Er can be bounded as given in the following Bonferroni-type inequalities:

P (Er)

{
≤
∑m

k=r(−1)k−r
(
k
r

)
Sk −

∑
ℓ∈J

(
ℓ
r

)(
ℓ−r−1
m−r

)
P (Eℓ), if m− r is even,

≥
∑m

k=r(−1)k−r
(
k
r

)
Sk +

∑
ℓ∈J

(
ℓ
r

)(
ℓ−r−1
m−r

)
P (Eℓ), if m− r is odd,

(8)

where the inequalities in (8) hold with equality if and only if P (Eℓ) = 0 for all ℓ ∈ [m+ 1, n]\J .

Remark 2 (i) Jordan’s formula in (2) is a special case of our Bonferroni-type formula in (7). To see this,
consider the special case that m = n− 1. Then we see from P (En) = P (A[n]) = Sn that (7) reduces to (2)
as follows:

P (Er) =

n−1∑
k=r

(−1)k−r

(
k

r

)
Sk + (−1)n−r

(
n

r

)
P (En) =

n∑
k=r

(−1)k−r

(
k

r

)
Sk.

Alternatively, consider the special case that Ai = ∅ for all m + 1 ≤ i ≤ n. Then we have P (Eℓ) = 0 for all
m+ 1 ≤ ℓ ≤ n, and hence (7) reduces to

P (Er) =

m∑
k=r

(−1)k−r

(
k

r

)
Sk. (9)

By removing all the terms in the Sk’s in (9) involving Am+1, Am+2, . . . , An that have no contributions to
the values of the Sk’s in (9), we obtain (2) (with n in (2) replaced by m).

(ii) It is easy to see from P (Eℓ) ≥ for all 1 ≤ ℓ ≤ n that our Bonferroni-type inequalities in (8) improve
on the classical Bonferroni inequalities in (5). Furthermore, for the special case that J = ∅, our inequalities
in (8) reduce to the inequalities in (5), and the inequalities in (5) hold with equality if and only if P (Eℓ) = 0
for all m+ 1 ≤ ℓ ≤ n, or, equivalently, P (Fm+1) = 0.

(Proof of Theorem 1) (i) Let BJ = (∩j∈JAj) ∩ (∩j∈[n]\JA
c
j) be the event that exactly the events

Aj , j ∈ J , among the events A1, A2, . . . , An occur for all J ⊆ [n]. It is clear that the events BJ , J ⊆ [n],
are pairwise disjoint and ∪J⊆[n]BJ = Ω. It is also clear that AI = ∪I⊆J⊆[n]BJ = ∪n

ℓ=|I| ∪I⊆J⊆[n],|J|=ℓ BJ

for all I ⊆ [n] such that I ̸= ∅, and Eℓ = ∪J⊆[n],|J|=ℓBJ for all 1 ≤ ℓ ≤ n.

In our proof, we will use the following identity from [1] (which can be obtained by first writing
(
k
r

)(
ℓ
k

)
=(

ℓ
r

)(
ℓ−r
k−r

)
, and then using binomial theorem for the case that m = ℓ, and writing

(
ℓ−r
k−r

)
=
(
ℓ−r−1
k−r−1

)
+
(
ℓ−r−1
k−r

)
for r + 1 ≤ k ≤ m and telescoping for the case that m ≤ ℓ− 1):

m∑
k=r

(−1)k−r

(
k

r

)(
ℓ

k

)
=


0, if r < m = ℓ,

1, if r = m = ℓ,

(−1)m−r
(
ℓ
r

)(
ℓ−r−1
m−r

)
, if m ≤ ℓ− 1.

(10)

Now we obtain (7) as follows:

m∑
k=r

(−1)k−r

(
k

r

)
Sk

=

m∑
k=r

(−1)k−r

(
k

r

) ∑
I⊆[n]
|I|=k

 n∑
ℓ=k

∑
I⊆J⊆[n]
|J|=ℓ

P (BJ)


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=

m∑
ℓ=r

∑
J⊆[n]
|J|=ℓ

(
ℓ∑

k=r

(−1)k−r

(
k

r

)(
ℓ

k

))
P (BJ) +

n∑
ℓ=m+1

∑
J⊆[n]
|J|=ℓ

(
m∑

k=r

(−1)k−r

(
k

r

)(
ℓ

k

))
P (BJ) (11)

=
∑
J⊆[n]
|J|=r

1 · P (BJ) +

m∑
ℓ=r+1

∑
J⊆[n]
|J|=ℓ

0 · P (BJ) +

n∑
ℓ=m+1

∑
J⊆[n]
|J|=ℓ

(−1)m−r

(
ℓ

r

)(
ℓ− r − 1

m− r

)
P (BJ)

= P (Er) + (−1)m−r
n∑

ℓ=m+1

(
ℓ

r

)(
ℓ− r − 1

m− r

)
P (Eℓ),

where the first equality follows from (1) and P (AI) = P (∪n
ℓ=|I|∪I⊆J⊆[n],|J|=ℓBJ) = Σn

ℓ=|I|ΣI⊆J⊆[n],|J|=ℓP (BJ)

for all I ⊆ [n] such that I ̸= ∅, the third equality follows from (10), and the last equality follows from
P (Eℓ) = P (∪J⊆[n],|J|=ℓBJ) = ΣJ⊆[n],|J|=ℓP (BJ) for all 1 ≤ ℓ ≤ n.

(ii) Since P (Eℓ) ≥ for all 1 ≤ ℓ ≤ n, it is clear that (ii) follows from (i).

In the following theorem, we give our Bonferroni-type formula and a class of sharp Bonferroni-type
inequalities for the probability P (Fr) of the event Fr.

Theorem 3 Suppose 1 ≤ r ≤ m ≤ n.
(i) The probability P (Fr) of the event Fr that at least r events out of the n events A1, A2, . . . , An occur

can be expressed in terms of Sr, Sr+1, . . . , Sm and P (Em+1), P (Em+2), . . . , P (En) as given in the following
Bonferroni-type formula:

P (Fr) =

m∑
k=r

(−1)k−r

(
k − 1

r − 1

)
Sk + (−1)m−r+1

n∑
ℓ=m+1

ℓ−1∑
u=m

(
u

r − 1

)(
u− r

m− r

)
P (Eℓ). (12)

(ii) For each J ⊆ [m+1, n], the probability P (Fr) of the event Fr can be bounded as given in the following
Bonferroni-type inequalities:s:

P (Fr)

{
≤
∑m

k=r(−1)k−r
(
k−1
r−1

)
Sk −

∑
ℓ∈J

∑ℓ−1
u=m

(
u

r−1

)(
u−r
m−r

)
P (Eℓ), if m− r is even,

≥
∑m

k=r(−1)k−r
(
k−1
r−1

)
Sk +

∑
ℓ∈J

∑ℓ−1
u=m

(
u

r−1

)(
u−r
m−r

)
P (Eℓ), if m− r is odd,

(13)

where the inequalities in (13) hold with equality if and only if P (Eℓ) = 0 for all ℓ ∈ [m+ 1, n]\J .

We make the following remark that is similar to Remark 2:

Remark 4 (i) The generalized inclusion-exclusion principle in (3) is a special case of our Bonferroni-type
formula in (12).

(ii) Our Bonferroni-type inequalities in (13) improve on the classical Bonferroni inequalities in (6). Fur-
thermore, our inequalities in (13) subsume the inequalities in (6).as a special case, and the inequalities in
(6) hold with equality if and only if P (Fm+1) = 0.

We need the following lemma for the proof of Theorem 3.

Lemma 5 Suppose 1 ≤ r ≤ m ≤ ℓ. Then we have

m∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
ℓ

k

)
= 1 + (−1)m−r

ℓ−1∑
u=m

(
u

r − 1

)(
u− r

m− r

)
. (14)
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Proof. We prove Lemma 5 by induction on ℓ. First consider the base case that ℓ = 1. Suppose 1 ≤ r ≤
m ≤ ℓ. Then we have r = m = ℓ = 1, and hence the LHS of (14) is equal to 1. Thus, Lemma 5 holds for the
base case that ℓ = 1.

Now assume as the induction hypothesis that Lemma 5 holds for some ℓ−1 ≥ 1. Suppose 1 ≤ r ≤ m ≤ ℓ.
We consider the following three cases:

Case 1: r = m = ℓ. In this case, the LHS of (14) is equal to 1. Thus, Lemma 5 holds in this case.
Case 2: r < m = ℓ. In this case, we have

m∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
ℓ

k

)
=

ℓ∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
ℓ− 1

k − 1

)
+

ℓ−1∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
ℓ− 1

k

)

=

ℓ−1∑
k′=r−1

(−1)k
′−(r−1)

(
k′

r − 1

)(
ℓ− 1

k′

)
+ 1 = 0 + 1 = 1,

where the first equality follows from m = ℓ,
(
ℓ
k

)
=
(
ℓ−1
k−1

)
+
(
ℓ−1
k

)
for r ≤ k ≤ ℓ−1, and

(
ℓ
ℓ

)
=
(
ℓ−1
ℓ−1

)
, the second

equality follows from the induction hypothesis, and the third equality follows from (10). Thus, Lemma 5
holds in this case.

Case 3: m ≤ ℓ− 1. In this case, we have
m∑

k=r

(−1)k−r

(
k − 1

r − 1

)(
ℓ

k

)

=

m∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
ℓ− 1

k − 1

)
+

m∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
ℓ− 1

k

)

=

m−1∑
k′=r−1

(−1)k
′−(r−1)

(
k′

r − 1

)(
ℓ− 1

k′

)
+

(
1 + (−1)m−r

ℓ−2∑
u=m

(
u

r − 1

)(
u− r

m− r

))

= (−1)(m−1)−(r−1)

(
ℓ− 1

r − 1

)(
(ℓ− 1)− (r − 1)− 1

(m− 1)− (r − 1)

)
+

(
1 + (−1)m−r

ℓ−2∑
u=m

(
u

r − 1

)(
u− r

m− r

))

= 1 + (−1)m−r
ℓ−1∑
u=m

(
u

r − 1

)(
u− r

m− r

)
,

where the second equality follows from the induction hypothesis and the third equality follows from (10).
Thus, Lemma 5 holds in this case.

(Proof of Theorem 3) Let BJ be given as in the proof of Theorem 1 for all J ⊆ [n]. Then we have

m∑
k=r

(−1)k−r

(
k − 1

r − 1

)
Sk

=

m∑
ℓ=r

∑
J⊆[n]
|J|=ℓ

(
ℓ∑

k=r

(−1)k−r

(
k − 1

r − 1

)(
ℓ

k

))
P (BJ) +

n∑
ℓ=m+1

∑
J⊆[n]
|J|=ℓ

(
m∑

k=r

(−1)k−r

(
k − 1

r − 1

)(
ℓ

k

))
P (BJ)

=

m∑
ℓ=r

∑
J⊆[n]
|J|=ℓ

1 · P (BJ) +

n∑
ℓ=m+1

∑
J⊆[n]
|J|=ℓ

(
1 + (−1)m−r

ℓ−1∑
u=m

(
u

r − 1

)(
u− r

m− r

))
P (BJ)

= P (Fr) + (−1)m−r
n∑

ℓ=m+1

ℓ−1∑
u=m

(
u

r − 1

)(
u− r

m− r

)
P (Eℓ),

where the first equality follows from the same arguments leading to (11) and the second equality follows
from (14) in Lemma 5 and and P (Fr) = Σn

ℓ=rP (Eℓ).
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