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Abstract—In this technical report, we derive the average how many times an optical packet recirculates through the
number of times an optical packet recirculates through the ptical  gptical switches and the fiber delay lines. Such knowledge ma
switch and the fiber delay lines in our previous constructios of provide some guidelines in the SDL design of optical buffers

optical priority queues (see Figure 1 in Section I) under Benoulli . L . .
arrival traffic, Bernoulli control input, and uniform prior ity when there is a limitation on the number of recirculations

assignment. The analytical results on the average number of through the optical switches and the fiber delay lines.
recirculations are further verified through simulations. Through In this technical report, we focus on our previous SDL
Simula..tions, we also find that these ar\alyti.cal results arefﬂ?ful in constructions of Optical priority gueues (a Special type of
cholosmg.thg number of fiber delay I|ne§ in our constructionof optical buffer) in [3] by using a feedback system consisbiig
optical priority queues when there is a limitation on the number . . .

of times an optical packet can be recirculated through the opcal &N (M +1) x (M +1) optical crossbar switch, &x 2 optical
switch and the fiber delay lines. crossbar switch, and/ fiber delay lines with appropriately
chosen delaysd;, ds, . .., dy; (see Figure 1). As in most works

in the SDL literature, we consider the discrete-time sgttm
which time is slotted and synchronized, and we assume that
packets are of the same size so that a packet can be tramsmitte

|. INTRODUCTION within a time slot. We note that for variable-length burstey
Constructing optical buffers by using optical crossh&@n be first segmented into fixed-size packets at the sources
Switches and fiber Delay Lines (SDL) for contention reand then reassembled at the destinations.
olution among packets competing for the same resources
in the optical domain has been well recognized as one of

Index Terms—Optical buffers, optical queues, optical switches,
all-optical packet-switched networks, priority queues.
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the feasible and promising technologies in all-opticalke&c ad,

switched networks. Many SDL designs of various types of & Highestpriority | [ 1 J

optical buffers have been proposed recently in the liteeatu {2 D22 2

(see [1]-[3] and the references therein). Dl Somert L |y Shifler £ .

An important and practical issue that is less addressed in soA e ¥ Mol Mﬂ%;@
the SDL literature is the number of recirculations throulgé t K ontrol m;)t v
optical switches and the fiber delay lines. It is well known 0
[4]-[6] that when an optical packet recirculates through th [1T——1 1 i
optical switches and the fiber delay lines, its signal qualit A 5%2
is degraded as a result of many factors such as power losg™ ™M Departure link ‘ M Departure link

M+1—»M+]] - N:HI M+1 -
when the optical packet travels through the fiber delay Jines (1 L0 Loss link T oo Loss link
c(t)=

crosstalk due to power leakage from other optical links, <

amplified spontaneous emission (ASE) from the Erbium dopggl 1. (a) A construction of an optical priority queue withfter S, d;
fiber amplifiers (EDFA) that are used for boosting the signalote that the sorter and the shifter can be combined togsihehat they
power, and the pattern effect of he optical wiches, o1 MENETEd b L s g e cossor e e
Therefore, if the number of times an optical packet recatasd

through the optical switches and the fiber delay lines exxeed o o .

a certain threshold, it may not be reliably reconstructed at” Priority queue (see Definition 1 in [3] for a formal
the destination due to severe power loss and/or serioug ndi§finition) is a network element with one arrival link, one
accumulation even if it appears at the right place and at tR@ntrol input, one departure link, and one loss link, andeve
right time, and such a packet is regarded as a lost packet. Racket in the queue hasdastinct priority. When the control

such, it is important and interesting to know, on the averagBPut of the priority queue is enabled, the packet with the
ighest priority in the queue departs from the departure lin
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in Figure 1. We say that the priority queue is enabled (resp’,= j,j + 1,...,q(t — 1). Such an operation is also known
disabled) at time if ¢(t) = 1 (resp.,c(t) = 0). The main as a Push-In—First-Out (PIFO) queue in the literature.

idea of our constructions of optical priority queues in [8]d We remark that the i.i.d. Bernoulli arrival traffic in (i) is
use the sorter in Figure 1(a) to sort the packets at the &rter commonly adopted assumption in the literature, and the
input links according to their priorities so that the pri@w$ uniform priority assignment in (iii) is a reasonable asstiomp

of the packets at the sorter’'s output links are decreasingvilen no further information about the arrival traffic, excep
the indices of the sorter’s output links. Then the shifted arts arrival rate, is available. Regarding the i.i.d. Beritiou
the 1 x 2 optical switch in Figure 1(a) are used to route theontrol input in (i), we note that the control input is for
highest priority packet to the departure link wheft) = 1 enabling/disabling the priority queue for the usage of the
(see the right-hand side of Figure 1(b)), and route the loweteparture link (the departure link could be viewed as resssir
priority packet to the loss link wher(t) = 0 (see the left-hand that are also shared by some other network elements), and
side of Figure 1(b)). By so doing, we showed in [3] that wés regulated by certain resource management or congestion
achieve an exact emulation of an optical priority queue wittontrol schemes. In the case that only the arrival rate is
buffer sizeB = Zf\il d; if we choosed; = dj;41-; =i for available, it is less complex and less costly for the resmurc
1=1,2,...,mandm < d; = dpy1-; < z‘—i-Z;.”:Q(((z‘—M—k manager to simply provide an enabling ratethat meets
2m—4j+1)/2)T | fori=m+1,m+2,...,[M/2], where certain requirement of quality of service.

0 < m < [M/2]. In order to achieve the maximum buffer In the rest of this technical report, we denate= 1 —« and

size that is possible under our constructions, in this teetin 3 = 1— 3 for ease of presentation. Under the assumptions in (i)
report we choosaelZ =dyi1-; =1 fori=1,2,...,m and and (ii), we can see that the queue length pro¢e&s, t > 0}

di = dpi1- =i+ Z "o[((i—M+2m—4j+1)/2)"] is a discrete-time birth-death process with the followitafes

fori=m+1,m+2,...,[M/2], wherem is chosen as the transition probabilities:
optimal value in{0,1,...,[M/2]} that maximizes the buffer _ )
sizeB=Y"" d,. P(q(t) =i+ 1q(t — 1) =)

This technical report is organized as follows. In Sectign Il = P(a(t) =1,¢(t) = 0q(t — 1) = i)
we present our results on the average number of recircofatio = P(a(t) = 1,¢(t) = 0) = af, fori=0,1,. - 1(1)
through the sorter and the shifter in Figure 1. Then we shov_\p(q( ) =i—1|qgt—1)=1)
our simulation results in Section Il and conclude this tEchl B

report in Section IV. P(a(t) = 0,c(t) = 1q(t — 1) = i)
= P(a(t) =0,¢(t)=1)=ap, fori=1,2,...,B, (2)
Il. AVERAGE NUMBER OF RECIRCULATIONS P(q(t) = ilq(t —1) = 1)

= P(a(t) =0,c(t) =0)+ P(a(t) = 1,c(t) = 1)
a-B+ap, fori=1,2,...,B—1, 3)
q(t) = 0l¢g(t —1) =0)

P(e(t) = 1)+ P(a(t) = 0,¢(t) =0) = B +a@- B, (4)
(t) = Blq(t —1) = B)

P(e(t) = 0) + Pla(t) = 1,e(t) =1) = B+ af,  (5)
q(t) = jlg(t — 1) = i) = 0, for the otheri and . (6)

In this section, we derive the average number of tindés,
an optical packet recirculates through the sorter and tiieesh
in our constructions of optical priority queues in Figure 1P
under i.i.d. Bernoulli arrival traffic, i.i.d. Bernoulli cgrol
input, and uniform priority assignment.

To be more precise, lei(t) (resp.,d(t), £(t)) be the number
of arrival packets (resp., departure packets, lost parlksts
time ¢, and letq(t) be the number of packets stored in the P
buffer of the priority queue at time (at the end of the™
time slot). We deriveN,. under the following assumptions:
(i) The arrival procesqa(t), t > 0} is a sequence of i.i.d.
Bernoulli random variables with mean i.e., P(a(t) = 1) =
«, and this is independent of everything else. (ii) The cdnt
input process{c(t), t > 0} is a sequence of i.i.d. Bernoulli '
random variables with mea#g, i.e., P(c¢(t) = 1) = g, and L if =8,
this is independent of everything else. (iii) The prioritiyan o = { BTl it o3 (7)
arrival packet is uniformly distributed with respect to $eoof T
the packets in the priority queue when it arrives, and this isIn the following theorem, we derive a closed-form expres-
also independent of everything else. Specifically, if tHeran sion for IV, for the case thatv = S under the assumptions
arrival packet at time, then its priority is uniformly distributed in (i) and (ii), and give an approximation expression fgy
over{1,2,...,q(t—1),q(t—1)+1}, and the priorities of the for the case that # 5 under the assumptions in (i)—(iii) (we
q(t — 1) packets stored in the buffer at time- 1 are updated note thatNV, still can be computed for the case that£ 3
accordingly so that their relative priority order is not ogad. under the assumptions in (i) and (ii), even though we are not
In other words, if the priority of the arrival packet at time able to obtain a closed-form expression 8y in this case).
is 7, wherel < j < ¢(t — 1) + 1, then the priorityj’ packet
stored in the buffer at time— 1 still has the same priority’ Theorem 1 (a) If « = 3, then N, = % + 1 under the
for j/=1,2,...,7—1, but has an updated priorif + 1 for assumptions in (i) and (ii).

e,
= f\
= | I

= H

Let P be the transition probability matrix specified by
(1)-(6), then the unique steady state probabilites =
(7o, 71, ..., mp) for the birth-death proceds(t), ¢t > 0} can
be obtained by solvingr = 7P and the result isr; = pm

r0<i<B, wherep=$ aﬁ and



(b) If « # B, thenN, ~ (mo (812, liil + é’fl))*l under approximateZ[X\” (t)] ~ N, + 1 for all 4, and it follows that

B-1 v us i ~
the assumptions in (i)—(iii), where = %2 and 7y = llp;spﬂ N BNTI'H NeBYlico #1—Nr gfll This |e5}3d5 tav, ~
v + i — P + —1' [

Proof. (a) From (7), we see that the average number of packé im0 741+ 5r) " = (M(F s 1 + F1))

L, stored in the buffer in steady state is givenlhy= 21:0 i

T = Zf;ol . BLH = g As the arrival rate\ in Steady state I1l. SIMULATION RESULTS

is given by = lim;_, o, Ela(t)] = «, it follows from Little’s

formula [7] that the average waiting timé’, of a packet in In Figure 2 and Figure 3, we show our simulation results. In

the queue in steady state is given By, = L = gﬁ our simulations, the simulation time 16® time slots. Note that
In Appendix A, we will show that the average recirculatio@lthough the results in this technical report hold for aevit

time (per recirculation)l; of an optical packet through thea and g, in practice it is more reasonable to choese< g

fiber delay lines in steady state is given By = ]@//22 = (the arrival rate is less than or equal to the service rate).

L whereM /2 is the average number of packets routed into For the case that = 5 = 0.9, we can see from Figure 2(a)
the M fiber delay lines at a given time slot in steady statéat the analytical result oV, in Theorem 1(a) matches
and B/2 is the average recirculation time (per recirculationyery well with the simulation results. In Figure 2(1Y; is
through the fiber delay lines of the packets routed into tiBe number of recirculations of a packet through the sorter
M fiber delay lines at a given time slot in steady state. A@d the shifter in Figure 1. We can see from Figure 2(b)
the number of times an optical packet recirculates throbgh tthat P(Y, > Ci(3% 4+ 1)) < 1077 for i = 2,3,4, where
sorter and the shifter is always one more than that through th2 = 5, C3 = 10, and C;, = 18. When an opt|cal packet
fiber delay lines in our constructions, it then follows thia¢ t recirculating through the sorter and the shifter more tiian

average number of recirculations through the sorter and t@es is regarded as a lost packet and we can tolerate a packet

shifter is given byN, = % + 1 = Bé%‘j) +1=M 4 loss probability of10~¢, this tells us that we need to choose
We remark that for the ¢ase that# 3, T, can be. computed M such thatV < |2a(& —1)] in Figure 1 fori = 2,3, 4.

as described at the end of Appendix A, and we can still For the case that = 0.9 and 3 = 0.95, we see from Fig-

computeN, as N, = =2 + 1 (even though we are not ableure 3(a) that our approximation result a. in Theorem 1(b)

to obtain a closed- form expression . in this case). is quite good as the approximation values are very closeeto th
(b) Suppose that there is an arrival packet at tirresteady simulation results. As in this case we have< j3, the queue

state. Call this packet the tagged packet andylgy be the size is small with high probability and it follows that most o

priority of the tagged packety(t) = i means that the taggedthe time only a few fiber delay lines are used for recircutatin

packet is the™ highest priority packet). If(t—1) = 4, where packets. As such), and P(Y, > z) will be approximately

0 < i < B—1, then the tagged packet is routed to the departuifee same for sufficiently large values 8f as can be seen

link with probability P(y(t) = 1,¢(t) = 1) = B/(i + 1), from the results for different values d@ff in Figure 3.

and is routed to one of the fiber delay lines with probability

1—8/(i +1). On the other hand, if(t — 1) = B, then the

tagged packet is routed to the departure link with probigbili %

P(~(t) =1,c¢(t) = 1) = 8/(B+1), is routed to the loss link g

with probability P(y(t) = B + 1,¢(t) = 0) = /(B + 1), s

and is routed to one of the fiber delay lines with probabilit ém

—©- N, (Theorem 1(a)) -o-P(Y, > )

—»— N, (Simulation)

1-8/(B+1)-B/(B+1)=DB/(B+1).
Let X,.(t) be the number of times that the tagged pack

recirculates through the sorter and the shifter, andyigt () ® Number of fiber delay Ines (V)

be the number of times that the tagged packet recirculates

through the sorter and the shifter conditionedggh— 1) =4 Fig- 2. o = 5 = 0.9: (8) Average number of recirculations. (b)

and the tagged packet belng routed to one of the fiber Clef:omplementary d|str|but|on of the number of recirculasion

lines for0 < i < B. Clearly, we have

B
@y 10 Oy ¥
N, = E[X, ()] =) P(q(t = 1) = )E[X,(t)|q(t — 1) = ] § e e i)
/LZO g 8 ANy (Sumulation 10—1 H
B-1 8! .
. o 6 10
- Z U <Z f 1 -1 + (1 - %) : E[X'SZ) (t)]> E i 107 M=8,16,24,32,40
i=0 5 T :
B B B B £ s o
+7rB< 1+ 1+ CEXB 1)) . g1
B + 1 B + 1 B + 1 [ ( ] < 00 4 8 12 16 20 24 28 32 36 40 0 12 24 36 48 60

Number of fiber delay lines (M) T

In the case that the tagged packet is routed to one of the
fiber delay lines, we make the approximation that it behaveg. 3. « = 0.9 and3 = 0.95: (a) Average number of recirculations. (b)
like a new arrival packet when it comes out of that fiber deldyPmplementary distribution of the number of recirculagion
line and reappears at the inputs of the sorter. As such, we can



IV. CONCLUSION For a states = (s1, s9, . . ., dem)' we denotes =r — s,

In this technical report, we derived the average number BRMe.(S1,52, ..., Sary o) = (F1—s1,72—52, -+, Tdpy 0 —
recirculations through the optical switch and the fiber ¢e|éd(M/21)' .
lines in our previous SDL constructions of optical priority We need the following two lemmas for our proof.
qgueues in Figure 1 under i.i.d. Bernoulli arrival traffig,d.
Bernoulli control input, and uniform priority assignmeiihe
results are ugeful i_n _ch(_)osing the number of fiber _delay _Iing,'?oof_ Suppose thab = (s1, 52, .., 54, ). Given that
when there is a limitation on the number of recirculationg; _ 1) = s (resp.,s(t — 1) = 8), let n(s) (resp.,

through the optical switch and the fiber delay lines in Figlre n(s)) be the number of packets stored in the cells
(1,dy),(2,d2),...,(M,dy) (the last cells of theM fiber

Lemma 2 P,y = P, - for all statess ands’.

APPENDIXA delay lines) in Figure 4 at time — 1 (at the end of
PROOF OFT,. = B/M IN THE PROOF OFTHEOREM 1 the (t — 1) time slot). Note that these(s) (resp.,n(s))
To prove the claim thatl;, = B/M in the proof of packets will appear at the input links of the sorter in Fig-

Theorem 1, we view a fiber delay line with delayas a ure 1 at the beginning of the!" time slot. Given that
sequentiabuffer that consists of cells with each cell capables(t — 1) = s (resp.,s(t — 1) = §) and (a(t),c(t)) = (a,c),
of holding one packet. In Figure 4, we show the cells dét s™¢ = ((s%)1,(s")2;, .-, (5", ) (€SP, 5" =
the fiber delay lines. Note that we index the cells from the3“¢)1, (3“2, ..., (5")a ) be the state at time for
input of a fiber delay line in Figure 4, namely, thig /)" cell (a,c) = (0,0),(0,1),(1,0), (1,1). Since the packets stored in
is the j1 cell from the input of thei fiber delay line for the cells of the(j — 1) column at timet — 1 simply move

i=1,2,...,Mandj=1,2,...,d;. forward to the cells of thg™ column during the™ time slot
for 2 < j < dn/2) (except the packets in the last cells of the
;Z 1‘ M fiber delay lines), we can see that
T I dz:2 (s"0); = (s"1); = (s"%); = (s"1);, 2 <j <draye- 9)
/i\ /i\\ / Ve Vom Given thats(t — 1) = s, let p; j(s) = 1 if there is a packet

g / doems[ Z@m eee[r @2 [ @ ]
ARy e e} COD M G K W XD M e W IS KO R
d Sk :

stored in cell(i, ) in Figure 4 at timel — 1 (at the end of the
N e e B R Y (t — 1)™ time slot) andp; ;(s) = 0 otherwise forl <i < M
dsus > [l = o [V o] (ML) =], W12 0w ) ymom @ND 1 < j < d;. Since the packets from the shifter's output
\ AR H ; links are routed to the fiber delay lines “consecutively 'ttt
B L v oy § CX MG EERTYHA G H G ETe) U Y SO from the first fiber delay line in our constructions of optical
N yom (et Lgh [o« o (Mem 1.2) | (M-m .1 priority queues, we can see that, given thgt— 1) = s, the
[+ m s; packets stored in the cells of th# column in Figure 4

~_~ ~_~ \

1

=2

e IRV at time ¢ — 1 are in the firsts; cells of the ;™ column for
-7 - 1 <j <dpy2- It follows that
Fig. 4. The cells of the fiber delay lines. Dij (s)

Let s(t) = (s1(t), s2(1). ... 54,2 (1)), wheres;(t) is :{ (1) gﬂ?e r%v Izsg ij+ 85— Landl < j < dpupap g
the number of packets stored in the cells of e column ’
in Figure 4 at timet (at the end of the" time slot) for ~ We claim that
1 g_j < dfM_/Q]. From the operaf[ions _of our _constructions of pii(8) + pars1-i,(8) = 1,
optical priority queues as described in Section I, we can see , , ) ,
that s(¢) only depends om(t — 1), a(t), and¢(t). As such, forij <i<M+1-i;andl <j<dpyz. (11)
the process(s(t), t > 0} is a discrete-time Markov chain. To see this, ifp; ;(s) = 0, then we have from (10) that >
Fors = (s1,52,...,8dr,,,) @nds’ = (5’1,5’2,...7‘9%/21), ij + s;. It follows from (8) thatM + 1 —4i < M + 1 —
let .o = P(s(t) = s'|s(t — 1) = s) be the state transition i; — s; = i; +7; —1—s; = i; +3; — 1, and hence we
probability from states at timet — 1 to states’ at timet, and se€€ from (10) thaps41-i,;(S) = 1. On the other hand, if
let 7s = limy_,o P(s(t) = s) be the steady state probabilitypi,;j(s) = 1, then we have <i; + s; — 1 and it follows that

of the Markov chain{s(t), ¢t > 0} being in states. M+1—i>M+2—ij—s; =ij+rj—s; =i +3j,
Letr = (ri,7a,...,7a;,,. ), Wherer; is the number of implying thatpys 1 ;(8) = 0.
cells of the ;™ column in Figure 4 forl < j < dpy . Similarly, given thats(t — 1) = s and (a(t), ¢(t)) = (a, ¢),

C|ear|y’ we haver; = M. Note that as we have = d; < the state at tlme is Sa_’c,and V\{e |etp;,j (S‘L.C) = 1lifthereis a
dy < -+ < dar/2), there exists a unique integer< i; < packet .stored in cell¢, j) in Figure 4 at t|met (at the end of
[M/2] such thatd;,_, < j < d;, for 1 < j < dar/a1. Since the ¢t t|m§ slot) andpg_’j(s“vc) = 0 otherwise forl <: < M
d; = dprp1—; for 1 <i < [M/2], we immediately see that and1 < j < d;, where(a,c) = (0,0),(0,1),(1,0),(1,1).
_ _ , Again, since the packets stored in the cells of thie- 1)
rj=M+1—i;) —ij +1=M+2 - 2i, column at timet — 1 simply move forward to the cells of the
for 1 < j <dpa/2)- (8) ;™ column during the™ time slot for2 < j < d[yr/2) (except



the packets in the last cells of the fiber delay lines), it is time ¢, implying that(s!); = n(s). If (a(t),c(t)) = (0,1),

easy to deduce from (11) that then there is one departure packet at tinfeote that we have
' e , e n(s) > 1 in this case) and there arg(s) — 1 packets stored
Pig(8%) + Parsa—i, 5°) =1, in the firstn(s) — 1 cells of first column in Figure 4 at timg
fori; <i<M+1—i; and2 <j < dpaa, and thus we havés®!); = n(s) — 1. Finally, if (a(t), c(t)) =
and for alla,c,a’,c. (12) (1,0), then there is one arrival packet at timand there are

— v ol n(s)+1 packets stored in the first(s)+1 cells of first column
g ;hen fo”}fmfs fr:)En thg 9eflrl'}7'3n OISZ ’ agdss h’ the in Figure 4 at timer (note that we have(s) < M — 1 in this
efinition of p; ;(s*) andp; ;(* ), (12), and (8) that case), and hence we hay€ ), = n(s) + 1.
aey . 4 (ga'scy . It follows from (9) and (16)—(18) that"® = s*! and the
(s )J+(S )J 0.0 .01 10 .
three states”’, s*, ands*-" are distinct. Therefore, we have

M+1—i, M+1—1,
= > Pt + Y Py, Py o0 = P((alt), c(t)) = (0,0)) + P((alt), c(t)) = (1,1))
i=ij . i=i; —a- B +af, (19)
M+1—i, M+1—1, ~ _
_ P g00 = P((a(t), c(t)) = (0,1)) = ap, (20)
- Z pl,] Z pM+1 7,,_] )7 ~ _
=1 =1 PS,SI’O = P((a(t)a C(t)) = (17 O)) = O‘ﬂv (21)
M+1—i; Pog =0, if 8" ¢ {s%0 %1 g0}, (22)
- ; L=Mw2-2; =1 Since in this case we have< n(s) < M — 1, we see from

(15) thatl < n(s) < M — 1 and hence (16)—(22) also hold
for the states.

Note that ifj = d;, then we have; = i for the case that Now we show that

1<i<[M/2],and we have'j = M+1—i(asd; = dpry1-4) Sac — §1—a,1—c7 for (a, C) = (0, 0), (0, 1)7 1, 0), 1, 1)' (23)
for the case thafM//2] +1 < i < M. Thus, we have from

for 2 < j < dra07 and alla,c,a’, ¢, (13)

(11) that In other words, we will show thats®<); + ('~ %17¢); =r;
~ , for 1 < j < dpae) @nd (a,c) = (0,0),(0,1), (1,0), (1, 1).
pi, d-(s) +p1\4+1—i di (S) =1, for 1 <i< M. (14) From (13) it suffices to prove thasa c)l +( 1—a,l1— c)l =7

As such, we see from the definition of(s) and n(s), the for (a,c) = (0,0),(0,1),(1,0),(1,1). For this, we see from
definition of p; j(s) andp; ;(8), di = dar1-4, and (14) that (16)—(18)7 (15), and/ = r, that

M M (5% 4+ @EY)1 = n(s) +nE) = M = rq,
n(s) =Y pia(s) + Y pia(8), (50 Yy 4+ (349), = (n(s) — 1) + (n(8) + 1) = M = r,
1=1 1=1 - —
M M (s")1+ G = (n(s) + 1) + (n(5) = 1) = M =1y,
=Y pia(8) + D Pidaris ), (%11 + (3%%)1 = n(s) +n(s) = M =ry.
i:; i:; Therefore, we have from®? = s''!, (23), (19)-(22), and
=3 pale)+ Y pariia ), coote B}
i=1 i=1 P.go=P.gx=PFszo=a-f+af
M ’ L ~
= Zl = M. (15) ~ = ?s.,so’“ = isl)la . (24)
2 s.s0.1 — Issl0 = af=ap = s,80:1 (25)
As it is clear that0 < n(s) < M, in the following we P —- =P, o1 =af =aB = P, a0, (26)
discuss the three casés< n(s) < M — 1, n(s) = 0, and s D ’
n(s) = M separately. 7 = 0= Py, if 8" ¢ {s"0,s%0, 200 (27)
Case 1.1 < n(s) < M —1: In this case, we first show thatBy combining (24)~(27), we hav&, o = 155,? for all & in
(80’0)1 _ (81’1)1 _ n(s)’ (16) this case. . _
(1), = n(s) — 1 (17) Case 2.n(s) = 0: In this case, we first show that
1= -4
(s20); = n(s) + 1. (18) (") = (s"h = (" =0, (28)
(s =1, (29)

To see this, suppose thst — 1) = s. If (a(t),c(t)) = (0,0),
then then(s) packets from the last cells of the fiber delay line3o see this, suppose thaft — 1) = s. If (a(t),c(t)) = (0,0)
that appear at the input links of the sorter at the beginning or (a(t),c(t)) = (1,1), then we haveg(s®?); = (s1); =
the ¢ time slot will be stored in the first(s) cells of first n(s) = 0 by following the same argument as in Case 1. If
column in Figure 4 at timg, and we have(s®%); = n(s). (a(t),c(t)) = (0,1), then there are no packets stored in the
If (a(t),c(t)) = (1,1), then there is one arrival packet andtells of first column in Figure 4 at time since there are no
one departure packet at timeand we still have:(s) packets packets from the last cells of the fiber delay lines appeaatng
stored in the firstn(s) cells of first column in Figure 4 at the input links of the sorter at the beginning of #ffetime slot



(n(s) = 0) and there are no arrival packets at tilmg(t) = 0)
even though the control input is enabledt{ = 1), and thus
we have(s®1); = 0. Finally, if (a(t),c(t)) = (1,0), then we

have(s!:?); = n(s) + 1 = 1 by following the same argument

as in Case 1.

It follows from (9), (28), and (29) thag?? = st = 0!
and the two states® ands!? are distinct. Therefore, we
have

Py 00 = P((a(t), c(t)) = (0,0)) + P((a(t), e(t)) = (1,1))
+P((a(t), c(t)) = (0,1))

) =a-B+af+ap, (30)
Ps.,slv0 = P((a(t)a C(t)) = (17 0)) = O‘Ev (31)
NS_,S/ =0, if 8" ¢ {s"° s"0}. (32)
Next, we show that
(50,0)1 — (51,1)1 _ (51,0)1 _ ]\/[7 (33)
"N, =M —1. (34)

To see this, suppose thatt — 1) = s. Since in this case
we haven(s) = 0, we see from (15) that(s) = M. If
(a(t),c(t)) = (0,0) or (a(t),c(t)) = (1,1), then we have
%9, = YY), n(s) = M by following the same
argument as in Case 1. (&(t),c(t)) = (1,0), then there is a
packet dropped from the loss link at timesince there aré/
packets from the last cells of the fiber delay lines appeaing
the input links of the sorter at the beginning of tffetime slot
(n(s) = M), there is one arrival packet at tinte(a(t) = 1),
and the control input is disabled(¢) = 0). It follows that
there areM packets stored in the cells of first column i
Figure 4 at timet, and we have(s"); = M. Finally, if
(a(t),c(t)) = (0,1), then we havgz®!); =n(3)—1=M-1
by following the same argument as in Case 1.

It follows from (9), (33), and (34) thag®® = %! = §%0
and the two states”’ ands’! are distinct. Therefore, we
have

Psz00 = P((a(t), c(t)) = (0,0)) + P((a(t), e(t)) = (1,1))
+P((a(t), c(t)) = (1,0))

=@ B+aB+ap, (35)
P§,§0v1 = P((a(t)a C(t)) = (07 1)) =ap, (36)
Psg =0, if s' ¢ {s%0,8%1}. (37)

Now we show that (23) also holds in this case. As in Case
it suffices to prove thats®¢); + (3'~%'=¢); = r; for (a,c) =
(0,0),(0,1),(1,0),(1,1). For this, we see from (28), (29),
(33), (34), andM = ry that

(SO" )1 + (51"1)1 =0+ M = r1,
(80’1)1 + (31"0)1 =0+M=ry,
(81’0)1 + (30’1)1 =1+ (M - 1) =1,
("N + G =0+M=mr

Therefore, we have frosf? = st! = s%1, (23), (30)—(32),

(35)—(37), andx = 3 that

P§75(1_0 = Pg,sz = 5751—1 = §7§0,0 =a B =+ Oéﬂ =+ Oéﬂ
=a- B af+ap = ps_’so,o = p5750,1 = ps_rsl,l, (38)
Ngslﬁ: ~§,§01 _aﬁ:aB:Ps,sloa (39)
7 =0=PFsy, if s’ ¢ {s%0 s101. (40)

P, for all ' in

s,s’

By combining (38)—(40), we havé&, o =
this case.

Case 3.n(s) = M: In this case, we see from (15) that
n(8) = 0. As such, we havé®, ., = P, o for all s in this
case by following the same afgument as in Case 2 with the
roles ofs ands interchanged. |

Lemma 3 7y = 75 for all statess.

Proof. Let u be the probability vector such that = 7s.
From Lemma 2 andr = 7w P, we can see that

E us/PS/7S = E W;Pgs = E 7TSNPSN7§ = Tls — Usg.
s’ s’

In other words, we haver = uP. It follows thatu is the
unique steady state probability vectorof the Markov chain
{s(t), t >0}, i.e., Ts = us = 75 for all s. [ |
Now we continue the proof of the claim th@ = B/M.
Consider a given time slot in steady state, called the tagged
time slot. LetZ; = 1 if there is a packet routed into thé&
fiber delay line at the tagged time slot agg = 0 otherwise
for1 <i < M. LetS be the number of packets routed into the

M fiber delay lines at the tagged time slot, 8.~ >\, Zi.

From Lemma 3 and; = M, we have

P(S=k)= > fa= > fs= Y Frs
s:s1=k s:s1=k s:s1=k
= ) F= ) T
s:s1=r1—k s:s1=M—k

=P(S=M—k). (41)
Since the packets from the shifter's output links are routed
to the fiber delay lines “consecutively” starting from thesffir
fiber delay line in our constructions of optical priority ques,

we see thatZ; = 1 if and only if S > i. It then follows from

(41) that

P(Z; =1)+ P(Zypp1—i = 1)

1’ M M
=Y P(S=k+ > P(S=k)
k=1 k=M+1—1i
M M
=Y P(S=k+ > P(S=M-k)
k=1 k=M+1—1i
M 1—1
=Y P(S=k)+Y P(S=k =1 (42)
k=0

From (41), we can see that the average number of packets
routed into theM fiber delay lines at the tagged time slot is



given by
M
> k-P(S=
k=0
M—l
Yizo k- P(S=k)+5 P(S=7)
B +3r yi k- P(S=M—k), if Mis even 5]

[M/ﬂ lk P(S = k)
+Zk:fM/2W k-P(S=M—kFE), if Mis odd

M _q
Sk +M—k)-P(S=k)+ M. p5 =2,

_ if M is even 7]
RN M~ k) - P(S = k),
if M is odd
M
M M
=5 > P(S= — (43)
k=0

Furthermore, we see fromy; 1 ; = d; for 1 < i < M
and (42) that the average recirculation time (per recitai
through the fiber delay lines of the packets routed intothe
fiber delay lines at the tagged time slot is given by

(P(Zi = 1)+ P(Znsa-i = 1)),
if M is even

M/2
+dme P(Zay = 1), if M is odd
{ M/Qd 1, if M is even

1

2

fM/ﬂ ld,. 1+dpag) - 3, if M is odd

(44)

Therefore, the average recirculation time (per reciroufgt
of an optical packet through the fiber delay lines in steady
state can be obtained from (43) and (44) as follows:
_ Zﬁ1 di - P(Z; =1)
T M
peo k- P(S =

B/2 B

K M2 M

We remark that for the case that# 3, we are not able
to obtainT;. in closed form, but we can still compufg. as
follows. First we computer by solving # = #P, where
P is given by (19)-(22), (30)—(32), and (35)—(37). Then we
calculate P(S = k) = D gs—r7s for 0 < k < M and
P(Z, =1) = P(S = k:) for 1 < ¢ < M. Finally, T,

can be computed aE" Zk—la(gf_,:))
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