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On Constructions of Optical Priority Queues
Under a Priority-Based Routing Policy

Jay Cheng, Senior Member, IEEE, Hsin-Hung Chou, Ling-Chieh Chang,
Shin-Shiang Huang, Hsueh-Wen Tseng, and Cheng-Hao Yang

Abstract—In this paper, we consider Switched-Delay-Lines
(SDL) constructions of optical priority queues by using optical
(bufferless) crossbar switches and optical fiber delay lines. In a
priority queue, each packet is associated with a priority upon
its arrival, the highest-priority packet is sent out from the
queue whenever there is a departure request, and the lowest-
priority packet is dropped from the queue whenever there is
a buffer overflow. Given any system for SDL constructions of
optical priority queues, the main research problem is twofold:
(i) the design of the routing policy performed by the optical
crossbar switches; (ii) the choice of the delays of the optical fiber
delay lines. Sarwate and Anantharam are the first to propose
a feedback system consisting of an optical (M + 2) × (M + 2)
crossbar switch and M optical fiber delay lines (see Figure 1 in
Section I) for SDL constructions of optical priority queues, and
they have shown that the largest buffer size that can possibly
be achieved by using such a feedback system is 2M . However,
whether this theoretical buffer size 2M can be achieved or not
remains an open research problem. Currently, the best result
in the literature was obtained by Cheng et al. and the achieved
buffer size is 2O(

√
αM), where α is a constant that depends on the

parameters used in their constructions. In this paper, we consider
a discrete-time setting and use a feedback system consisting of
an optical crossbar switch and multiple groups of optical first-in
first-out (FIFO) multiplexers with delay one (FM1’s) for SDL
constructions of optical priority queues under a priority-based
routing policy (see Figure 2 in Section I). Our contributions are
as follows: (i) We extend and generalize an important class of
constructions that contains the optimal constructions in the work
of Cheng et al. As a result, we achieve larger buffer sizes and
less construction complexities/costs than those by Cheng et al.
(ii) We obtain a closed-form expression for the maximum buffer
size that is achieved by the optimal construction for the scenario
that each group of FM1’s has the same number of FM1’s. (iii)
Our constructions possess a salient feature, namely, fault-tolerant
capability, that can tolerate the malfunctioning of some FM1’s by
using the generalized results obtained in this paper. (iv) We show
that our constructions can be implemented by using an optical
(M + 2) × (M + 2) crossbar switch and M optical fiber delay
lines, and achieve a buffer size 2O(

√
αM), where α is a constant
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that depends on the parameters used in our constructions and
is better, i.e., larger, than that in the work of Cheng et al. in a
very broad regime.

Index Terms—Fault tolerance, FIFO multiplexers, optical
buffers, optical queues, optical switches, priority queues.

I. INTRODUCTION

Due to the lack of optical random-access memory, an
important and challenging issue in all-optical packet-switched
networks is the design and implementation of optical buffers
for conflict resolution among packets competing for the same
resources. One of the feasible approaches for the implementa-
tion of optical buffers is to use optical fiber delay lines to store
optical packets and use optical (bufferless) crossbar switches
to route optical packets through the optical fiber delay lines
[1].

Apparently, the optical buffers in such Switched-Delay-
Lines (SDL) constructions do not have random-access capa-
bility since optical packets can only enter the fibers from
the inputs of the fibers and cannot be retrieved until they
reach the outputs of the fibers. As such, given any system
for SDL constructions of optical buffers, there are two main
research issues to consider: (i) the design of the routing policy
performed by the optical (bufferless) crossbar switches; (ii) the
choice of the delays of the optical fiber delay lines. If this is
done properly, then optical packets can be routed to the right
places at the right times, and exact emulations of the desired
optical buffers can be achieved.

In the last three decades, there have been extensive studies
on SDL constructions of optical buffers. These works include:
(i) the early feasibility studies in [2]–[5], (ii) output-buffered
switches in [6]–[11], (iii) first-in first-out (FIFO) multiplexers
in [6] and [11]–[21], (iv) FIFO queues in [21]–[26], (v) last-
in first-out (LIFO) queues in [23], [24], and [27], (vi) priority
queues in [28]–[38], (vii) time slot interchanges in [21] and
[39], (viii) linear compressors/decompressors, non-overtaking
delay lines, and flexible delay lines in [21] and [40]–[45],
and (ix) FIFO/LIFO/absolute contractors in [46]. Moreover,
results on the fundamental complexity of SDL constructions of
optical queues can be found in [47] and performance analysis
for optical queues has been addressed in [48] and [49].

As in most works on SDL constructions of optical buffers,
in this paper we focus on the theoretical aspect of the con-
structions of optical buffers. We are aware of many important
practical feasibility issues such as: (i) router buffer sizing
problem; (ii) fault-tolerant capability; (iii) limitation on the
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number of times that an optical packet can recirculate through
optical switches and optical fiber delay lines. For those in-
terested in such issues, we refer to Sections V-A and V-C in
[37] and the references therein for details. For review articles
on SDL constructions of optical buffers as well as related
implementation and feasibility issues, we refer to [50]–[55]
and the references therein.

In this paper, we consider SDL constructions of optical
priority queues. Priority queues is one of the most general and
versatile buffering schemes, and includes the most commonly
used FIFO queues and LIFO queues as special cases. In a
priority queue, each packet is associated with a priority upon
its arrival, the packet with the highest priority is sent out from
the queue whenever there is a departure request and there are
packets in the queue, and the packet with the lowest priority is
dropped from the queue whenever there is a buffer overflow.
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Fig. 1. A construction of an optical priority queue by using a feedback system
consisting of an optical (M +2)× (M +2) (bufferless) crossbar switch and
M optical fiber delay lines with delays d1, d2, . . . , dM .

The first construction of optical priority queues was pub-
lished by Sarwate and Anantharam of UC Berkeley [28]. In
[28], they showed that an optical priority queue with buffer
size O(M2) can be implemented by using a feedback system
consisting of an optical (M+2)×(M+2) (bufferless) crossbar
switch and M optical fiber delay lines with appropriately
chosen delays d1, d2, . . . , dM (see Figure 1). Furthermore,
they have shown that the largest buffer size that can possibly
be achieved by using such a feedback system is 2M . However,
whether this theoretical buffer size 2M can be achieved or not
remains unknown, and, in the case that it can be achieved,
how to achieve this theoretical upper bound remains an open
research problem. Several improvements on the O(M2) buffer
size obtained by Sarwate and Anantharam have been made
in [29]–[37] by using better designs of the routing policy
performed by the optical crossbar switch and better choices
of the delays of the optical fiber delay lines in Figure 1. The
best result currently available in the literature was obtained
by Cheng et al. [37], and the buffer size achieved in [37] is

2O(
√
αM), where α is a constant that depends on the param-

eters used in their constructions. The buffer size 2O(
√
αM)

is “exponential” in
√
M and significantly outperforms all

previous results in [28]–[36] that are only “polynomial” in
M .

In this paper, we consider a discrete-time setting and adopt
a generalization of the feedback system in [37] for SDL
constructions of optical priority queues under a priority-based
routing policy (see Figure 2). The feedback system in Figure 2
consists of an optical (bufferless) crossbar switch and multiple
groups of optical FIFO multiplexers with delay one (FM1’s).
By a detailed counting argument, we are able to obtain a better
lower bound than that in [37] on the number of arrival links
of the FM1’s in any given group for the accommodation of
packets routed to that group. As a result, we achieve less
construction complexities/costs than those in [37]. Moreover,
by using better choices of the parameters in our constructions,
we achieve larger buffer sizes than those in [37].

The contributions of this paper are as follows:

(i) Our constructions extend and subsume as special cases
an important class of constructions that contains the op-
timal constructions in [37]. As a result, we achieve larger
buffer sizes and less construction complexities/costs than
those in [37]. This is confirmed by our numerical results,
which show that we achieve a buffer size that is 1.27
to 1.54 times of that in [37] but with 18% to 62%
less construction cost in most cases. Furthermore, our
constructions generalize those in [37] from the scenario
that each group of FM1’s has the same number of FM1’s
and each FM1 has the same number of arrival links
to the scenario that each group of FM1’s may have a
different number of FM1’s and the FM1’s in different
groups may have different numbers of arrival links. Such
a generalization leads to the fault-tolerant capability of
our constructions that will be mentioned in (iii) below.

(ii) We obtain a closed-form expression for the maximum
buffer size that is achieved by the optimal construction
for the scenario that each group of FM1’s has the same
number of FM1’s.

(iii) The generalized results obtained in this paper make it
possible for us to show that our constructions possess
fault-tolerant capability. Fault-tolerance is an important
practical issue in the design of any network element, and
needs to be taken into consideration during the design
phase of a network element. We show that if some of the
FM1’s in the feedback system in Figure 2 fail to function
properly, then the feedback system in our constructions
can still be operated as an optical priority queue with a
smaller buffer size by using the remaining functioning
FM1’s.

(iv) We show that our constructions in Figure 2 can be
implemented by using an optical (M + 2) × (M + 2)
crossbar switch and M optical fiber delay lines as in
Figure 1, and can achieve a buffer size 2O(

√
αM), where

α is a constant that depends on the parameters used in
our constructions. The achieved buffer size is larger than
that in [37] in a very broad regime.
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Fig. 2. A construction of an optical priority queue by using a feedback system consisting of an optical (Σk
i=1mini + 2) × (Σk

i=1mini + 2) (bufferless)
crossbar switch and k groups of optical FIFO multiplexers with delay one (FM1’s), where the ith group has mi parallel optical ni-to-1 FM1’s (niFM1’s)
with the same buffer size Bi (Bi ≥ 1) for i = 1, 2, . . . , k. For brevity, in this figure we denote M ′

i = Σi
j=1mj and M ′′

i = Σi
j=1mjnj for i = 1, 2, . . . , k.

The rest of this paper is organized as follows. In Section II,
we give the assumptions, the system model, and the research
problem of this paper, give a characterization of a priority
queue, and briefly review related works in the literature. In
Section III, we describe the FM1’s used in our constructions
and give an illustration of the operations of the feedback
system in our construction. In Section IV, we show that the
feedback system in Figure 2 can be operated as an optical
priority queue under our priority-based routing policy if the
parameters in our constructions are properly chosen, and show
the extension and generalization of our constructions over an
important class of constructions in [37]. In Section V, we give
the optimal construction that achieves minimum construction
complexity and maximum buffer size, obtain a closed-form
expression for the maximum buffer size, and show that our
constructions possess fault-tolerant capability. In Section VI,
we show that our constructions can be implemented by using
an optical (M +2)× (M +2) crossbar switch and M optical
fiber delay lines, and can achieve a buffer size 2O(

√
αM), where

α is larger than that in [37] in a very broad regime. Finally,

we describe a few directions worthy of further investigation
in Section VII and conclude this paper in Section VIII.

II. ASSUMPTIONS, PRIORITY QUEUES, MODEL,
PROBLEM, AND RELATED WORKS

In this section, we give the assumptions, the system model,
and the research problem of this paper. We also give a
characterization of a priority queue and give a brief review
of related works in the literature.

A. Assumptions

As in most works on SDL constructions of optical queues,
in this paper we consider a discrete-time setting and make the
following assumptions: (i) Time is slotted and synchronized.
(ii) Packets are of the same size. (iii) An optical M × M
(bufferless) crossbar switch is a network element with M
input links and M output links that can realize all of the
M ! permutations between its inputs and its outputs. (iv) A
fiber delay line with delay d is a network element with one
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input link and one output link that requires d time slots for
a packet to traverse through. (v) There is at most one packet
from any link of any network element at any time slot. (vi)
Every network element is initially empty at time slot t = 0.

We note that variable-size packets can be taken care of with
ease by implementing packet segmentation at the sources and
packet reassembly at the destinations.

To be concise, in the rest of this paper we simply refer to
time slot t as “slot t.” Since there can be at most one packet
from any link at any slot t (by assumption (v)), we characterize
a link by its link state and say that a link is in state 1 (resp.,
state 0) at slot t if there is a packet (resp., there is no packet)
from that link at slot t.

B. Priority Queues

Arrival link
Departure link 

Loss link 

Control input  

a(t)
d(t)

(t)

c(t)

Priority queue 

with buffer size B

B

Fig. 3. A priority queue with buffer size B.

A priority queue with buffer size B is a network element
with one arrival link, one control input, one departure link,
and one loss link (see Figure 3). We denote a(t), d(t), and
ℓ(t) as the link states of the arrival link, the departure link,
and the loss link, respectively, at slot t. We denote c(t) = 1
(resp., c(t) = 0) if there is a departure request (resp., there
is no departure request) from the controller at slot t. We also
denote q(t) as the number of packets stored in the buffer of
the priority queue at slot t.

At each slot, every packet in the priority queue is assigned
a distinct priority subject to the constraint that the relative
priority order between any two packets remains unchanged as
long as they are in the queue. For this, at each slot we assign a
distinct positive integer, called tag, to each packet in the queue
according to its priority level. Specifically, the tag τp(t) of a
packet p in the queue at slot t is assigned as τp(t) = i if packet
p is the ith-highest-priority packet among the q(t− 1) + a(t)
packets in the queue at slot t (including the q(t− 1) packets
buffered in the queue at slot t− 1 and the a(t) arrival packets
at slot t). Therefore, the q(t− 1) + a(t) packets in the queue
at slot t are assigned tags from 1 to q(t − 1) + a(t) in the
order of decreasing priority.

We characterize a priority queue with buffer size B by the
following three properties:

(P1) Nonidling and priority departure: If there is a departure
request from the controller and there are packets in the queue
at slot t, i.e., c(t) = 1 and q(t− 1) + a(t) ≥ 1, then there is
a departure packet at slot t, i.e., d(t) = 1, and the departure
packet at slot t is the packet in the queue at slot t with the
highest priority, i.e., the packet in the queue at slot t whose
tag is assigned as 1 at slot t. Otherwise, there is no departure
packet at slot t, i.e., d(t) = 0.

(P2) Maximum buffer usage and priority loss: If there is a
buffer overflow at slot t, i.e., c(t) = 0, q(t − 1) = B, and
a(t) = 1, then there is a loss packet at slot t, i.e., ℓ(t) = 1,
and the loss packet at slot t is the packet in the queue at slot
t with the lowest priority, i.e., the packet in the queue at slot
t whose tag is assigned as B+1 at slot t. Otherwise, there is
no loss packet at slot t, i.e., ℓ(t) = 0.

(P3) Flow conservation: Packets arriving from the arrival
link are either buffered in the queue or transmitted through
the departure link or the loss link. Thus, we have q(t) =
q(t− 1) + a(t)− d(t)− ℓ(t).

C. System Model

In our constructions, we use the feedback system in Figure 2
that consists of an optical (Σk

i=1mini +2)× (Σk
i=1mini +2)

(bufferless) crossbar switch and k groups of optical FM1’s.
The ith group of FM1’s has mi parallel optical ni-to-1 FM1’s
(niFM1’s) with the same buffer size Bi (Bi ≥ 1) for i =
1, 2, . . . , k. We note that the feedback system in Figure 2 is
a generalization of that used in [37] (as the feedback system
in [37] is for the scenario that each group of FM1’s has the
same number of FM1’s and each FM1 has the same number
of arrival links, say mi = m and ni = n for all 1 ≤ i ≤ k).

We describe our model for the feedback system in Figure 2
as follows (in our description, the notations a(t), c(t), d(t),
ℓ(t), q(t), and τp(t) are the same as those in Section II-B).

1) Arrival traffic: The arrival process {a(t) : t ≥ 1} can
be arbitrary, i.e., a(t) can be either 0 or 1 at any slot t.

2) Packet request: The packet request process {c(t) : t ≥
1} can also be arbitrary, i.e., c(t) can be either 0 or 1 at any
slot t.

3) Priority assignment: At any slot, the priority assignment
for packets in the system can be arbitrary subject to the
constraint that the relative priority order between any two
packets remains unchanged as long as they are in the system.
Specifically, let packet pi be the ith-highest-priority packet
among the q(t−1) packets buffered in the system at slot t−1
for i = 1, 2, . . . , q(t − 1). If there is no arrival packet at slot
t, then there are q(t − 1) packets in the system at slot t and
they are packets p1, p2, . . . , pq(t−1). Due to the relative priority
order constraint, the tags of packets p1, p2, . . . , pq(t−1) at slot
t are assigned as

τpi
(t) = i, i = 1, 2, . . . , q(t− 1).

On the other hand, if there is an arrival packet, say packet
p, at slot t, then there are q(t− 1) + 1 packets in the system
at slot t and they are packets p1, p2, . . . , pq(t−1) and packet
p. The tag of packet p at slot t can be arbitrarily assigned,
say τp(t) = ip with 1 ≤ ip ≤ q(t− 1) + 1, i.e., packet p has
lower priority than ip − 1 packets buffered in the system at
slot t−1. Due to the relative priority order constraint, the tags
of packets p1, p2, . . . , pq(t−1) at slot t are assigned as

τpi
(t) =

{
i, if i = 1, 2, . . . , ip − 1,

i+ 1, if i = ip, ip + 1, . . . , q(t− 1).

In practice, the priority assignment is usually determined by
the policy of a switching fabric and quality of service (QoS)
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requirements. For example, in FIFO (resp., LIFO) priority
assignment, the earliest (resp., latest) arrival packet in the
system has the highest priority and is assigned a tag equal
to one.

4) Optical FIFO multiplexers with delay 1 (FM1’s): The
optical FM1’s in the feedback path in Figure 2, like the optical
fiber delay lines in the feedback path in Figure 1, are used for
buffering packets and feeding packets from the outputs of the
crossbar switch back to the inputs of the crossbar switch. The
details of the FM1’s will be given in Section III-A.

5) Priority-based routing policy: The optical crossbar
switch in the feedback system in Figure 2 is operated under
the following priority-based routing policy (R1)–(R3).

To describe the routing policy, at each slot we assign a
distinct positive integer, called buffering tag, to each of the
packets that have to be buffered in the system (i.e., the packets
in the system that are not routed to the departure link or
the loss link) according to its priority level. Specifically, the
buffering tag τ̃p(t) of a packet p that has to be buffered in the
system at slot t is assigned as τ̃p(t) = i if packet p is the ith-
highest-priority packet among the q(t−1)+a(t)−d(t)− ℓ(t)
packets that have to be buffered in the system at slot t.
Therefore, the q(t− 1) + a(t)− d(t)− ℓ(t) packets that have
to be buffered in the system at slot t are assigned buffering
tags from 1 to q(t − 1) + a(t) − d(t) − ℓ(t) in the order of
decreasing priority.

Moreover, each group of FM1’s in Figure 2 is associated
with a unique set of buffering tags. Specifically, let Uk be
the targeted buffer size of the optical priority queue in our
constructions and let U0 = 0 < U1 < U2 < · · · < Uk. Then
we associate the ith group of FM1’s with the set Ψi = {Ui−1+
1, Ui−1 + 2, . . . , Ui} of buffering tags for i = 1, 2, . . . , k. Let
Li = Ui−1 + 1 for i = 1, 2, . . . , k. Then we have Li ≤ Ui

and Ψi = {Li, Li+1, . . . , Ui} for i = 1, 2, . . . , k. Clearly, we
have Ui = Σi

j=1|Ψj | for i = 1, 2, . . . , k.
We now describe the routing policy (R1)–(R3) at any slot

t as follows (note that in (R1) and (R2) we have used a
parameter s with 1 ≤ s ≤ k − 1):

(R1) Routing to the departure link: If there is a departure
request from the controller and there are packets in the system
at slot t, i.e., c(t) = 1 and q(t − 1) + a(t) ≥ 1, then the
highest-priority packet (if any) among all of the packets from
the arrival link or the output links of the first “s+ 1” groups
of FM1’s is routed to the departure link at slot t. Otherwise,
no packet is routed to the departure link at slot t.

(R2) Routing to the loss link: If there is a buffer overflow
at slot t, i.e., c(t) = 0, q(t− 1) = Uk, and a(t) = 1, then the
lowest-priority packet (if any) among all of the packets from
the arrival link or the output links of the last “s+ 1” groups
of FM1’s is routed to the loss link at slot t. Otherwise, no
packet is routed to the loss link at slot t.

(R3) Priority-based routing to the k groups of FM1’s and
round-robin routing to the FM1’s in each group and to the
input links of each FM1: (i) For a packet at an input link of
the crossbar switch that has to be buffered in the system at
slot t, it is routed to the group of FM1’s whose associated
set of buffering tags contains the buffering tag of that packet.
(ii) For packets routed to a group of FM1’s at slot t, they are

evenly distributed to the FM1’s in that group in a round-robin
manner, one by one, starting from the FM1 next to the one
that was lastly used before slot t (or starting from the first
FM1 in the case that no FM1 in that group has been used
before slot t). (iii) Furthermore, for packets routed to an FM1
at slot t, they are also evenly distributed to the input links of
that FM1 in a round-robin manner, one by one, starting from
the input link next to the one that was lastly used before slot
t (or starting from the first input link in the case that no input
link of that FM1 has been used before slot t).

Due to the round-robin routing in (R3), we can achieve
load balancing among the FM1’s and fully utilize the buffering
capacity of the FM1’s.

In Section III-B, we will give an illustration of how the
feedback system in Figure 2 is operated under the priority-
based routing policy (R1)–(R3).

D. Problem

As mentioned earlier in Section I, by using a feedback
system as in Figure 1 consisting of an optical (M+2)×(M+2)
(bufferless) crossbar switch and M optical fiber delay lines
with delays d1, d2, . . . , dM for SDL constructions of optical
priority queues, the main research problem is twofold: (i) the
design of the routing policy performed by the optical crossbar
switch; (ii) the choice of the delays d1, d2, . . . , dM of the
optical fiber delay lines.

In Theorem 11 (in Section VI-A), we will show that our
constructions by using a single optical crossbar switch and
multiple optical FM1’s as in Figure 2 can be implemented by
using a single optical crossbar switch and multiple optical fiber
delay lines as in Figure 1. As such, it is easy to see that for our
constructions by using the feedback system in Figure 2 under
the priority-based routing policy (R1)–(R3) and for given 1 ≤
s ≤ k−1 and m1,m2, . . . ,mk ≥ 1, the main research problem
is as follows: (i) how to choose the parameters n1, n2, . . . , nk

and B1, B2, . . . , Bk for the FM1’s in Figure 2; (ii) how to
choose the parameters |Ψ1|, |Ψ2|, . . . , |Ψk| used in the routing
policy (R1)–(R3).

As is it clear that the choices in (i) and (ii) above are
closely related and highly coupled, the problem of making
such choices is very difficult and challenging. For given
1 ≤ s ≤ k − 1 and m1,m2, . . . ,mk ≥ 1, we will show
in Theorem 1 (in Section IV-A) how to choose the parameters
n1, n2, . . . , nk, B1, B2, . . . , Bk, and |Ψ1|, |Ψ2|, . . . , |Ψk| so
that the feedback system in Figure 2 can be operated as an
optical priority queue under the routing policy (R1)–(R3).

E. Related Works

In the following, we briefly review some of the works
on SDL constructions of optical priority queues that can be
implemented by using a feedback system consisting of an
optical (M + 2) × (M + 2) crossbar switch and M optical
fiber delay lines as in Figure 1.

As mentioned earlier in Section I, the first such construction
was given in [28]. In [28], the authors employed a sorting-
based routing policy that uses the relative priority order among
packets at the input links of the crossbar switch to design
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the routing policy, and chose M = 2k − 1, where k is a
positive integer, di = i for i = 1, 2, . . . , k, and di = 1 for
i = k+1, k+2, . . . , 2k−1 to achieve a buffer size Σk

i=1di =
(M + 1)(M + 3)/8, i.e., the achieved buffer size is O(M2).

Since the arguments in [28] are quite elaborate and com-
plicated, a simpler proof was given in [29] by introducing the
notion of a complementary priority queue. In [29], the authors
employed a better sorting-based routing policy than that in
[28] and chose M = 2k−1, where k is a positive integer, and
di = d2k−i = i for i = 1, 2, . . . , k to achieve a buffer size
ΣM

i=1di = (M + 1)2/4, i.e., the achieved buffer size is still
O(M2).

The buffer size O(M2) achieved in [28] and [29] was
improved to O(M3) in [30] by establishing a partial ordering
among packets at the input links of the crossbar switch for the
design of the routing policy and by making better choices of
the delays d1, d2, . . . , dM (see [30, Theorem 3]). Then in [35],
a recursive construction was proposed to achieve a buffer size
O(M c) for any positive integer c (see [35, Theorem 15]).

The main reason why the achieved buffer sizes are only
polynomial in M in the above works is that they only use
the relative priority order among packets at the input links of
the crossbar switch, instead of directly use their priorities, to
design the routing policy performed by the crossbar switch.
In [37], the authors directly used the priorities of packets
for the design of the routing policy and achieved a buffer
size 2O(

√
αM), where α is a constant that depends on the

parameters used in their constructions (see [37, Theorem 11]).

III. THE OPERATIONS OF THE FEEDBACK SYSTEM IN OUR
CONSTRUCTIONS

In this section, we describe the FM1’s used in our construc-
tions and give an illustration of the operations of the feedback
system in our constructions.

A. FIFO Multiplexers With Delay One (FM1’s) and an Illus-
tration

Arrival link 1 Departure link 

Loss link 1 n-to-1 

FIFO multiplexer 

with buffer size B-1

Arrival link 2

Arrival link n

. 
. 

. Loss link 2 

Loss link n-1 

. 
. 
. 

B

1

a1(t)
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d(t)
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n-1(t)

(t)
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~ 

~ 

~ 

~ 
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~ 

~ 

Fig. 4. An n-to-1 FIFO multiplexer with delay one (nFM1) and buffer size
B.

In Figure 2, we use FM1’s in the feedback path for buffering
packets and feeding packets from the outputs of the crossbar
switch back to the inputs of the crossbar switch. An nFM1 with
buffer size B is a network element with n arrival links, one
departure link, and n− 1 loss links, and is the concatenation
of an n-to-1 FIFO multiplexer (nFM) with buffer size B − 1
and a delay line with delay equal to one (see Figure 4). We
denote ãi(t) as the link state of arrival link i at slot t for
i = 1, 2, . . . , n, denote d̃(t) as the link state of the departure

link at slot t, and denote ℓ̃i(t) as the link state of loss link i
at slot t for i = 1, 2, . . . , n− 1. Let ã(t) = Σn

i=1ãi(t) be the
number of arrival packets at slot t, let ℓ̃(t) = Σn−1

i=1 ℓ̃i(t) be the
number of loss packets at slot t, and let q̃(t) be the number
of packets buffered in the nFM1 at slot t.

Arrival link 1 Departure link 

Loss link 1 

a'1(t) d'(t)

'1(t)
n-to-1 

FIFO multiplexer 

with buffer size B'

Arrival link 2a'2(t)

Arrival link na'n(t)

. 
. 

. Loss link 2 '2(t)

Loss link n-1 'n-1(t)

. 
. 
. 

B'

a'(t)
'(t)

Fig. 5. An n-to-1 FIFO multiplexer (nFM) with buffer size B′.

In the following, we describe an nFM with buffer size B′.
An nFM with buffer size B′ is a network element with n
arrival links, one departure link, and n − 1 loss links (see
Figure 5). We denote a′i(t) as the link state of arrival link i at
slot t for i = 1, 2, . . . , n, denote d′(t) as the link state of the
departure link at slot t, and denote ℓ′i(t) as the link state of loss
link i at slot t for i = 1, 2, . . . , n−1. Let a′(t) = Σn

i=1a
′
i(t) be

the number of arrival packets at slot t, let ℓ′(t) = Σn−1
i=1 ℓ

′
i(t)

be the number of loss packets at slot t, and let q′(t) be the
number of packets buffered in the nFM at slot t.

We characterize an nFM with buffer size B′ by the follow-
ing three properties:

(M1) Nonidling and FIFO departure with prioritized arrival
links: If there are packets in the nFM at slot t, i.e., q′(t −
1) + a′(t) ≥ 1, then there is a departure packet at slot t, i.e.,
d′(t) = 1, and the departure packet at slot t is the packet in
the nFM at slot t with the earliest arrival time. Otherwise,
there is no departure packet at slot t, i.e., d′(t) = 0. To break
the tie among packets arriving at the same time, we assume
that the arrival links are prioritized so that a packet from an
arrival link with a smaller link index is regarded as arriving
earlier than that from an arrival link with a larger link index.

(M2) Maximum buffer usage and FIFO loss with prioritized
loss links: If there is a buffer overflow at slot t, i.e., q′(t−1)+
a′(t)−d′(t) ≥ B′+1, or, equivalently, q′(t−1)+a′(t)−1 ≥
B′ + 1 (since in both cases we have q′(t − 1) + a′(t) ≥ 1
and hence it follows from the nonidling property in (M1) that
d′(t) = 1), then there are ℓ′(t) = q′(t−1)+a′(t)−1−B′ loss
packets at slot t, and the loss packets at slot t are the ℓ′(t)
packets in the nFM at slot t with the latest arrival times and
they are dropped from loss links 1, 2, . . . , ℓ′(t) in the order of
increasing arrival times. Otherwise, there are no loss packets
at slot t, i.e., ℓ′(t) = 0.

(M3) Flow conservation: Packets arriving from the n arrival
links are either buffered in the nFM or transmitted through the
departure link or the n− 1 loss links. Thus, we have q′(t) =
q′(t− 1) + a′(t)− d′(t)− ℓ′(t).

Note that we have from the maximum buffer usage property
in (M2) that ℓ′(t) = max{q′(t−1)+a′(t)−d′(t)−B′, 0}, and
hence it follows from the flow conservation property (M3) that
q′(t) = q′(t− 1)+a′(t)− d′(t)− ℓ′(t) = min{B′, q′(t− 1)+
a′(t) − d′(t)} ≤ B′. Therefore, there are at most B′ packets
buffered in an nFM with buffer size B′ at any slot. As such, a
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packet admitted into an nFM with buffer size B′ sees at most
B′ packets ahead of it, and it then follows from the nonidling
and FIFO departure property in (M1) that the admitted packet
is buffered in that nFM for at most B′ slots.

Since an nFM1 with buffer size B is the concatenation of
an nFM with buffer size B − 1 and a delay line with delay
equal to one as shown Figure 4, we immediately see that there
are at most B packets buffered in an nFM1 with buffer size
B at any slot (as we have just seen that an nFM with buffer
size B − 1 can buffer at most B − 1 packets and a delay line
with delay equal to one can buffer at most one packet at any
slot), and a packet admitted into an nFM1 with buffer size
B is buffered in that nFM1 for at least one slot and at most
B slots (as we have just seen that a packet admitted into an
nFM with buffer size B − 1 is buffered in that nFM for at
most B − 1 slots and it takes exactly one slot for a packet to
traverse through a delay line with delay equal to one).

In Figure 6, we give a simple example to illustrate how
an nFM1 with buffer size B works at a slot t, where n = 4
and B = 3: (i) We use a square box with a number inside
it at a link to indicate that there is a packet from that link.
(ii) We use three square boxes concatenated contiguously to
represent the buffers of the nFM1 (note that B = 3). Each
square box is capable of buffering one packet. A square box
with (resp., without) a number inside it means that there is a
packet (resp., there is no packet) buffered in that square box.
(iii) Packets admitted into the nFM1 are stored in empty square
boxes (starting from the rightmost and towards the leftmost
empty box) according to their arrival times (from the earliest
to the latest arrival time). (iv) A packet in a square box with
a smaller number inside it has an earlier arrival time than that
in a square box with a larger number inside it.

On the left-hand sides of Figure 6(a)–(d), we show the
system seen by an arrival packet at slot t, i.e., we show the
packets buffered in the nFM1 at slot “t − 1” and show the
packets from the arrival links of the nFM1 at slot “t.” On the
right-hand sides of Figure 6(a)–(d), we show the system after
it is operated as an nFM1 with buffer size B at slot t, i.e., we
show the packets from the departure link and the loss links
of the nFM1 at slot “t” and show the packets buffered in the
nFM1 at slot “t.” The details are described as follows:

• In Figure 6(a), two packets arrive from arrival links 2
and 4 at slot t and see an empty system, i.e., there are no
packets buffered in the nFM1 at slot t − 1 (see the left-
hand side of Figure 6(a)). Thus, the packets from arrival
links 2 and 4 are stored in the first square box and the
second square box, respectively, at slot t (see the right-
hand side of Figure 6(a)).

• In Figure 6(b), four packets arrive from the four arrival
links at slot t and see an empty system (see the left-
hand side of Figure 6(b)). Thus, the packets from arrival
links 1, 2, and 3 are stored in the first square box, the
second square box, and the third square box, respectively,
at slot t, and the packet from arrival link 4 is immediately
dropped from loss link 1 at slot t (see the right-hand side
of Figure 6(b)).

• In Figure 6(c) and Figure 6(d), we show two cases that
the arrival packets see a nonempty system, i.e., there are

packets buffered in the nFM1 at slot t−1. In these cases,
the packet buffered in the first square box at slot t − 1
is sent out from the departure link of the nFM1 at slot t,
each of the other packets buffered in the nFM1 at slot t−1
moves one step, i.e., one box, forward to the right and
is stored there at slot t, and the arrival packets admitted
into the nFM1 are stored in the remaining empty square
boxes at slot t according to their arrival times (in the case
that there is a buffer overflow, i.e., there are not enough
empty square boxes to store all of the arrival packets, the
latest arrival packets are immediately dropped from the
loss links of the nFM1 at slot t).

B. An Illustration of The Operations of the Feedback System
in Our Constructions

In the following, we give an example to illustrate how
our construction of an optical priority queue works under the
routing policy (R1)–(R3). In our example, we have s = 1,
k = 4, and m1 = m2 = m3 = m4 = 2, and we choose
n1 = n2 = n3 = n4 = 4, B1 = 1, B2 = 2, B3 = 2, B4 = 1,
|Ψ1| = 1, |Ψ2| = 3, |Ψ3| = 3, and |Ψ4| = 1 (note that these
parameters satisfy the conditions (A1)–(A3) in Theorem 1)
so that we have Ψ1 = {1},Ψ2 = {2, 3, 4},Ψ3 = {5, 6, 7},
and Ψ4 = {8} (see Figure 7(a)). Thus, the buffer size of the
priority queue is Uk = Σk

i=1|Ψi| = 8. In our example, we
only show the four groups of FM1’s (note that k = 4) in the
feedback path of the feedback system in Figure 2: the four
groups are arranged from the first group at the bottom to the
fourth group at the top, and the two FM1’s in each group
(note that m1 = m2 = m3 = m4 = 2) are so arranged that
the first FM1 is on top of the second FM1 (see Figure 7(b)).
For simplicity, we do not show the links of the FM1’s in
Figure 7(b). Since the FM1’s are in the feedback path of
the feedback system in Figure 2, we note that in Figure 7(b)
packets arrive at the FM1’s from the right and depart from
the FM1’s from the left (note that Theorem 1 guarantees that
there are no loss packets at the FM1’s).

In Figure 8, we give a sample path for our example to
illustrate how our construction of an optical priority queue
works under the routing policy (R1)–(R3). In Figure 8(a), we
show the states a(t) and c(t) of the arrival link and the control
input, respectively, at slot t for 1 ≤ t ≤ 15, and we also show
the resulting states d(t) and ℓ(t) of the departure link and the
loss link, respectively, at slot t under the routing policy (R1)–
(R3) for 1 ≤ t ≤ 15. On the left-hand side for each slot t
in Figure 8(b), we show the system seen by an arrival packet
at slot t, i.e., we show the packets buffered in the system at
slot “t − 1” and show the packet from the arrival link of the
system at slot “t,” and we also indicate which packet buffered
in the system at slot t − 1 is routed to the departure link or
the loss link of the system at slot “t” if the crossbar switch
in Figure 2 is operated under the routing policy (R1)–(R3) at
slot t. On the right-hand side for each slot t in Figure 8(b),
we show the packets buffered in the system at slot “t” after
the crossbar switch in Figure 2 is operated under the routing
policy (R1)–(R3) at slot t.

We note that for each slot t in Figure 8(b), the number
inside a square box is the buffering tag of the corresponding
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Fig. 6. An illustration of how an nFM1 with buffer size B works at a slot t, where n = 4 and B = 3: (a) q̃(t − 1) = 0, ã1(t) = ã3(t) = 0, and
ã2(t) = ã4(t) = 1. (b) q̃(t − 1) = 0 and ã1(t) = ã2(t) = ã3(t) = ã4(t) = 1. (c) q̃(t − 1) = 2, ã1(t) = ã2(t) = ã3(t) = 0, and ã4(t) = 1. (d)
q̃(t − 1) = 2 and ã1(t) = ã2(t) = ã3(t) = ã4(t) = 1. On the left-hand sides of (a)–(d), we show the system seen by an arrival packet at slot t. On the
right-hand sides of (a)–(d), we show the system after it is operated as an nFM1 with buffer size B at slot t. Note that a packet in a square box with a smaller
number inside it has an earlier arrival time than that in a square box with a larger number inside it.
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Fig. 7. (a) The parameters in our example for the illustration of how our
construction of an optical priority queue works under the routing policy (R1)–
(R3). (b) A schematic representation of the four groups of FM1’s in our
example (for simplicity, we do not show the links of the FM1’s). Since the
FM1’s are in the feedback path of the feedback system in Figure 2, we note
that packets arrive at the FM1’s from the right and depart from the FM1’s
from the left (note that Theorem 1 guarantees that there are no loss packets
at the FM1’s).

packet at slot “t.” Furthermore, on the left-hand side for each
slot t in Figure 8(b), the dot on the left of an FM1 in a group
indicates that the corresponding FM1 is the FM1 in that group
that was lastly used before slot “t” (in the case that no FM1
in a group has been used before slot “t,” there is no dot on the
left of any FM1 in that group). Therefore, on the right-hand
side for each slot t in Figure 8(b), the dot on the left of an
FM1 in a group indicates that the corresponding FM1 is the
FM1 in that group that was lastly used before or at slot t, i.e.,
before slot “t + 1” (in the case that no FM1 in a group has
been used before or at slot t, i.e., before slot “t+ 1,” there is
no dot on the left of any FM1 in that group).

We describe how the routing policy (R1)–(R3) works for a
few slots as follows:

• At slot t = 1, a packet arrives and sees an empty system,
i.e., there are no packets buffered the system at slot t−1 =
0 (note that we have assumed that the system is initially
empty at slot t−1 = 0), and there is no departure request
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Fig. 8. A sample path for our example to illustrate how our construction of an optical priority queue works under the routing policy (R1)–(R3). (a) The states
of the links in the system at slot t for 1 ≤ t ≤ 15. (b) On the left-hand side for each slot t, we show the system seen by an arrival packet at slot t, and we
also indicate which packet buffered in the system at slot t− 1 is routed to the departure link or the loss link of the system at slot “t” if the crossbar switch
in Figure 2 is operated under the routing policy (R1)–(R3) at slot t. On the right-hand side for each slot t, we show the packets buffered in the system at slot
“t” after the crossbar switch in Figure 2 is operated under the routing policy (R1)–(R3) at slot t. Note that for each slot t, the number inside a square box is
the buffering tag of the corresponding packet at slot “t.” Also note that on the left-hand side (resp., right-hand side) for each slot t, the dot on the left of an
FM1 in a group indicates that the corresponding FM1 is the FM1 in that group that was lastly used before slot “t” (resp., before or at slot “t,” i.e., before
slot “ t+ 1”).
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(see the left-hand side for slot t = 1 and recall that the
number inside a square box is the buffering tag of the
corresponding packet at slot t = 1). Thus, the arrival
packet at slot t = 1 has to be buffered in the system and
its buffering tag is assigned as 1 at slot t = 1. As such,
as shown on the right-hand side for slot t = 1, the arrival
packet is routed to the first group of FM1’s (as 1 ∈ Ψ1)
and stored in the first FM1 in the first group at slot t = 1
(as no FM1 in the first group has been used before slot
t = 1).

• At slot t = 2, a packet arrives and sees a system with
one packet, i.e., the packet buffered in the system at slot
t − 1 = 1, where the packet buffered in the system at
slot t− 1 = 1 has lower priority than the arrival packet,
and there is no departure request (see the left-hand side
for slot t = 2). Thus, the two packets in the system at
slot t = 2 have to be buffered in the system and their
buffering tags are assigned as 1 and 2 at slot t = 2. As
such, as shown on the right-hand side for slot t = 2, the
packet with buffering tag assigned as 1 is routed to the
first group of FM1’s (as 1 ∈ Ψ1) and stored in the second
FM1 in the first group at slot t = 2 (as the first FM1 is
the FM1 in the first group that was lastly used before slot
t = 2), and the packet with buffering tag assigned as 2
is routed to the second group of FM1’s (as 2 ∈ Ψ2) and
stored in the first FM1 in the second group at slot t = 2
(as no FM1 in the second group has been used before
slot t = 2).

• At slot t = 7, a packet arrives and sees a system with
six packets, i.e., the six packets buffered in the system at
slot t − 1 = 6, where three of the six packets buffered
in the system at slot t − 1 = 6 have lower priorities
than the arrival packet, and there is a departure request
(see the left-hand side for slot t = 7). Thus, there is a
departure packet at slot t = 7, and the packet with tag
assigned as 1 at slot t = 7, i.e., the packet buffered in the
second FM1 in the first group at slot t− 1 = 6, is routed
to the departure link of the system at slot t = 7 (see
the left-hand side for slot t = 7). Moreover, as shown
on the right-hand side for slot t = 7, the packets with
buffering tags assigned as 1 and 2 at slot t = 7 move
one step forward to the left at slot t = 7, the packets
with buffering tags assigned as 3 and 4 at slot t = 7 are
routed to the second group of FM1’s (as 3, 4 ∈ Ψ2) and
stored in the second FM1 and the first FM1, respectively,
in the second group at slot t = 7 (as the first FM1 is the
FM1 in the second group that was lastly used before slot
t = 7), and the packets with buffering tags assigned as 5
and 6 at slot t = 7 are routed to the third group of FM1’s
(as 5, 6 ∈ Ψ3) and stored in the second FM1 and the first
FM1, respectively, in the third group at slot t = 7 (as the
first FM1 is the FM1 in the third group that was lastly
used before slot t = 7).

• At slot t = 13, a packet arrives and sees a full system,
i.e., there are Uk = 8 packets buffered in the system at
slot t− 1 = 12, where four of the eight packets buffered
in the system at slot t−1 = 12 have lower priorities than
the arrival packet, and there is no departure request (see

the left-hand side for slot t = 13). Thus, there is a buffer
overflow at slot t = 13, and the packet with tag assigned
as Uk + 1 = 9 at slot t = 13, i.e., the packet buffered in
the second FM1 in the fourth group at slot t− 1 = 12, is
routed to the loss link of the system at slot t = 13 (see
the left-hand side for slot t = 13). Moreover, as shown
on the right-hand side for slot t = 13, the packet with
buffering tag assigned as 1 at slot t = 13 is routed to the
first group of FM1’s (as 1 ∈ Ψ1) and stored in the second
FM1 in the first group at slot t = 13 (as the first FM1
is the FM1 in the first group that was lastly used before
slot t = 13), the packets with buffering tags assigned as
2, 3, and 4 at slot t = 13 are routed to the second group
of FM1’s (as 2, 3, 4 ∈ Ψ2) and stored in the second FM1,
the first FM1, and the second FM1, respectively, in the
second group at slot t = 13 (as the first FM1 is the
FM1 in the second group that was lastly used before slot
t = 13), the packets with buffering tags assigned as 7
and 8 at slot t = 13 move one step forward to the left at
slot t = 13, and the packets with buffering tags assigned
as 5 and 6 at slot t = 13 are routed to the third group
of FM1’s (as 5, 6 ∈ Ψ3) and stored in the second FM1
and the first FM1, respectively, in the third group at slot
t = 13 (as the first FM1 is the FM1 in the third group
that was lastly used before slot t = 13).

IV. OUR CONSTRUCTIONS AND COMPARISON WITH THE
CONSTRUCTIONS IN [37]

In this section, we present our constructions and show
the extension and generalization of our constructions over an
important class of constructions in [37].

A. Our Constructions

For given 1 ≤ s ≤ k − 1 and m1,m2, . . . ,mk ≥ 1, we
show in the following theorem how to choose the parameters
n1, n2, . . . , nk, B1, B2, . . . , Bk, and |Ψ1|, |Ψ2|, . . . , |Ψk| so
that the feedback system in Figure 2 can be operated as an
optical priority queue under the routing policy (R1)–(R3).

Theorem 1 Assume that the feedback system in Figure 2
is operated under the routing policy (R1)–(R3) at all slots.
Suppose that 1 ≤ s ≤ k − 1 and m1,m2, . . . ,mk ≥ 1. Also
suppose that the parameters n1, n2, . . . , nk, B1, B2, . . . , Bk,
and |Ψ1|, |Ψ2|, . . . , |Ψk| satisfy the following conditions (A1)–
(A3):

(A1) The condition for n1, n2, . . . , nk:

ni ≥ ⌈(Σj2
j=j1

mj + 1)/mi⌉, (1)

where j1 and j2 are given as follows (note that j1 and
j2 depend on i): If k is even, say k = 2ℓ, then

j1 = max{i− 1, 1}
and j2 = min{i+ s, ℓ+ 1}, if 1 ≤ i ≤ ℓ,

j1 = max{i− s, ℓ}
and j2 = min{i+ 1, k}, if ℓ+ 1 ≤ i ≤ k.

(2)
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On the other hand, if k is odd, say k = 2ℓ− 1, then

j1 = max{i− 1, 1}
and j2 = min{i+ s, ℓ}, if 1 ≤ i ≤ ℓ− 1,

j1 = i− 1 and j2 = i+ 1, if i = ℓ,

j1 = max{i− s, ℓ}
and j2 = min{i+ 1, k}, if ℓ+ 1 ≤ i ≤ k.

(3)

(A2) The condition for B1, B2, . . . , Bk:

1 ≤ Bi ≤

{
Ui−1 + 1, if 1 ≤ i ≤ s+ 1,

Ui−1 − Ui−s−1, if s+ 2 ≤ i ≤ k,
(4)

and

1 ≤ Bi ≤

{
Ui+s − Ui, if 1 ≤ i ≤ k − s− 1,

Uk − Ui + 1, if k − s ≤ i ≤ k.
(5)

Note that we have B1 = Bk = 1.
(A3) The condition for |Ψ1|, |Ψ2|, . . . , |Ψk|:

1 ≤ |Ψi| ≤ (mi − 1)Bi + 1 for 1 ≤ i ≤ k, (6)

and

|Ψi| ≥

{
Bi−1, if 2 ≤ i ≤ ⌈k/2⌉,
Bi+1, if ⌊k/2⌋+ 1 ≤ i ≤ k − 1.

(7)

Then the feedback system in Figure 2 can be operated as an
optical priority queue with buffer size Uk = Σk

i=1|Ψi| at all
slots.

We need the following results in Lemma 2 from [37] for
the proof of Theorem 1. Roughly speaking, the upper (resp.,
lower) bound in Lemma 2(i) holds because there is at most
one arrival (resp., departure) packet with higher priority than
a given packet at any slot, and Lemma 2(ii)(iii) hold because
a packet admitted into an FM1 with buffer size Bi can be
buffered in that FM1 for at most Bi slots for all 1 ≤ i ≤ k.

Lemma 2 Assume that the feedback system in Figure 2 is
operated under the routing policy (R1)–(R3) at all slots.
Suppose that the properties (P1) and (P2) are satisfied up
to slot t, and the property (P3) is satisfied up to slot t− 1.

(i) [37, Theorem 3] The buffering tag of a packet can either
increase by at most one or decrease by at most one at slot t.
Precisely, if a packet p is buffered in the system at slot t− 1
and has to be buffered in the system at slot t, then we have

−1 ≤ τ̃p(t)− τ̃p(t− 1) ≤ 1. (8)

(ii) [37, Theorem 5] The buffering tag of a packet p buffered
in the ith group of FM1’s at slot t is limited to the range
[Li −Bi + 1, Ui +Bi − 1], i.e.,

Li −Bi + 1 ≤ τ̃p(t) ≤ Ui +Bi − 1, for all 1 ≤ i ≤ k. (9)

(iii) [37, Theorem 6] There are at most |Ψi|+Bi−1 packets
buffered in or routed to the ith group of FM1’s at slot t for
all 1 ≤ i ≤ k.

Remark 3 We note that all of the bounds in Lemma 2 are
tight as can be seen from our illustration sample path in
Figure 8(b):

(i) The inequality for the upper (resp., lower) bound in (8)
holds with equality at slots t = 2, 4, 5, 6, 10, 13, and 14
(resp., slots t = 7, 8, 12, and 15) in Figure 8(b).

(ii) For i = 1, we have Ui+Bi−1 = 1 and Li−Bi+1 = 1,
and hence both the inequality for the upper bound and the
inequality for the lower bound in (9) hold with equalities at
slots t ∈ {1, 2, . . . , 15}\{7}. For i = 2, we have Ui+Bi−1 =
5 and Li−Bi+1 = 1, and hence the inequality for the upper
(resp., lower) bound in (9) holds with equality at slots t = 5
and 6 (resp. slot t = 7). For i = 3, we have Ui+Bi−1 = 8 and
Li−Bi+1 = 4, and hence the inequality for the upper (resp.,
lower) bound in (9) holds with equality at slots t = 10 and 13
(resp. slot t = 12). Finally, for i = 4, we have Ui+Bi−1 = 8
and Li − Bi + 1 = 8, and hence both the inequality for the
upper bound and the inequality for the lower bound in (9)
hold with equalities at slots t = 11, 12, 14, and 15.

(iii) For i = 1, we have |Ψi| + Bi − 1 = 1, and hence
the upper bound in Lemma 2(iii) holds with equality at slots
t ∈ {1, 2, . . . , 15}\{7}. For i = 2, we have |Ψi|+Bi−1 = 4,
and hence the upper bound in Lemma 2(iii) holds with equality
at slots t = 5, 6, and 7. For i = 3, we have |Ψi|+Bi−1 = 4,
and hence the upper bound in Lemma 2(iii) holds with equality
at slots t = 10, 12, and 13. Finally, for i = 4, we have
|Ψi|+Bi−1 = 1, and hence the upper bound in Lemma 2(iii)
holds with equality at slots t = 11, 12, 14, and 15.

Proof. (Proof of Theorem 1) We prove Theorem 1 by
showing that the properties (P1)–(P3) are satisfied at all slots
t ≥ 1. We do so by induction on t. First consider slot t = 1. (i)
If there is no departure request from the controller or there are
no packets in the system at slot t = 1, then no packet is routed
to the departure link at slot t = 1 (according to the routing
policy (R1)), and hence the nonidling and priority departure
property (P1) is satisfied at slot t = 1. So assume that there is
a departure request from the controller and there are packets
in the system at slot t = 1. Since we have assumed that the
system is initially empty at slot t− 1 = 0, i.e., q(t− 1) = 0,
it is clear that there is a packet from the arrival link at slot
t = 1 and that arrival packet is the only packet in the system
at slot t = 1. It follows that the arrival packet at slot t = 1
is the highest-priority packet in the system and is routed to
the departure link immediately at slot t = 1 (according to the
routing policy (R1)). Thus, the nonidling and priority departure
property (P1) is satisfied at slot t = 1. (ii) As it is clear from
q(t−1) = 0 < Uk that there is no buffer overflow at slot t = 1,
no packet is routed to the loss link at slot t = 1 (according
to the routing policy (R2)). Thus, the maximum buffer usage
and priority loss property (P2) is satisfied at slot t = 1. (iii)
Since the FM1’s are initially empty at slot t − 1 = 0, it is
clear that there is no buffer overflow at any FM1 at slot t = 1.
Moreover, since there are no packets from the outputs of the
FM1’s at slot t = 1 (as the FM1’s are initially empty at slot
t−1 = 0) and there is at most one arrival packet at slot t = 1
(as there is only one arrival link), we see that there is at most
one packet at the input links of the crossbar switch at slot
t = 1 and hence there is at most one packet routed to any
input link of any FM1 at slot t = 1 (according to the routing
policy (R3)). As such, there is no collision at any input link of
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any FM1 at slot t = 1. Thus, there is no internal packet loss
in the system at slot t = 1, and hence the flow conservation
property (P3) is satisfied at slot t = 1.

Now assume as the induction hypothesis that the properties
(P1)–(P3) are satisfied up to slot t− 1 for some t− 1 ≥ 1. In
the following, we complete the induction by showing that the
properties (P1)–(P3) are satisfied at slot t.

(i) The nonidling and priority departure property (P1) is
satisfied at slot t. If there is no departure request from the
controller or there are no packets in the system at slot t, then
no packet is routed to the departure link at slot t (according
to the routing policy (R1)), and hence the property (P1) is
satisfied at slot t. So assume that there is a departure request
from the controller and there are packets in the system at slot
t, i.e., c(t) = 1 and q(t− 1) + a(t) ≥ 1. Let packet p be the
highest-priority packet in the system at slot t, i.e., τp(t) = 1.
In the following, we show that packet p is either from the
arrival link or from the output links of the first “s+1” groups
of FM1’s at slot t. It then follows from the routing policy (R1)
that packet p is sent out from the departure link at slot t. Thus,
the property (P1) is satisfied at slot t.

If packet p is an arrival packet at slot t, then we are done.
So assume that packet p is not an arrival packet at slot t.
Then packet p must be buffered in the system at slot t − 1.
Let ap(t) be the number of arrival packets at slot t with higher
priorities than packet p. Since the flow conservation property
(P3) is satisfied at slot t−1 (by the induction hypothesis), we
know that there is no internal packet loss at slot t − 1 and
hence we have

τp(t) = τ̃p(t− 1) + ap(t). (10)

From (10) and ap(t) ≥ 0, we have τ̃p(t−1) = τp(t)−ap(t) ≤
τp(t) = 1. As we also have τ̃p(t − 1) ≥ 1, it follows that
τ̃p(t− 1) = 1.

We claim that packet p is buffered in the first s+1 groups
of FM1’s at slot t− 1. Assume on the contrary that packet p
is buffered in the last k− s− 1 groups of FM1’s at slot t− 1,
say packet p is buffered in the ith group of FM1’s at slot t−1
for some s+ 2 ≤ i ≤ k. Then we have

Li −Bi + 1 = (Ui−1 + 1)−Bi + 1 ≥ Ui−s−1 + 2

> U0 + 2 = 2 > 1 = τ̃p(t− 1),

where the first inequality follows from (4) in (A2) and the
second inequality follows from U0 < U1 < · · · < Uk and
i − s − 1 > 0. Thus, we have reached a contradiction to
Li −Bi + 1 ≤ τ̃p(t− 1) in Lemma 2(ii).

We have just shown that packet p is buffered in the first
s+ 1 groups of FM1’s at slot t− 1, say packet p is buffered
in the ith group of FM1’s at slot t−1 for some 1 ≤ i ≤ s+1.
Let t′ be the slot that packet p is routed to the ith group of
FM1’s for the last time before or at slot t−1. Since we know
that a packet can be buffered in an FM1 with buffer size Bi

for at most Bi slots, we have t′ ≤ t − 1 ≤ t′ + Bi − 1. If
t′ ≤ t− 1 ≤ t′ +Bi − 2, then we have

τ̃p(t− 1) = τ̃p(t
′) + Σt−t′−1

ℓ=1 (τ̃p(t
′ + ℓ)− τ̃p(t

′ + ℓ− 1))

≥ Li − (t− t′ − 1) · 1 ≥ Li − (Bi − 2)

= (Ui−1 + 1)− (Bi − 2) ≥ 2 > 1 = τ̃p(t− 1),

where the first inequality follows from Li ≤ τ̃p(t
′) ≤ Ui

(according to the routing policy (R3)), Lemma 2(i), and t−t′−
1 ≥ 0, the second inequality follows from t− t′−1 ≤ Bi−2,
and the third inequality follows from (4) in (A2). Thus, we
have reached an apparent contradiction. As a result, it must
be the case that t−1 = t′+Bi−1 and packet p is buffered in
one of the FM1’s in the ith group at slots t′, t′+1, . . . , t−1 so
that it is buffered there for t− t′ = Bi slots. As we know that
a packet can be buffered in an FM1 with buffer size Bi for at
most Bi slots, it is clear that packet p must leave from the ith

group of FM1’s at slot t, and we are done. (In our illustration
sample path in Figure 8(b), we have s = 1: for the case that
i = 1, see slots t = 7, 12, and 15 for such a departure packet;
and for the case that i = 2 = s+ 1, see slot t = 8 for such a
departure packet.)

(ii) The maximum buffer usage and priority loss property
(P2) is satisfied at slot t. If there is no buffer overflow at slot
t, then no packet is routed to the loss link at slot t (according
to the routing policy (R2)), and hence the property (P2) is
satisfied at slot t. So assume that there is a buffer overflow
at slot t, i.e., c(t) = 0, q(t − 1) = Uk, and a(t) = 1. Let
packet p be the lowest-priority packet in the system at slot t,
i.e., τp(t) = Uk + 1. In the following, we show that packet p
is either from the arrival link or from the output links of the
last “s + 1” groups of FM1’s at slot t. It then follows from
the routing policy (R2) that packet p is dropped from the loss
link at slot t. Thus, the property (P2) is satisfied at slot t.

If packet p is an arrival packet at slot t, then we are done.
So assume that packet p is not an arrival packet at slot t.
Then packet p must be buffered in the system at slot t − 1.
Clearly, (10) in the proof of (i) above still holds. From (10) and
ap(t) ≤ 1, we have τ̃p(t−1) = τp(t)−ap(t) ≥ τp(t)−1 = Uk.
As we also have τ̃p(t − 1) ≤ q(t − 1) = Uk, it follows that
τ̃p(t− 1) = Uk.

We claim that packet p is buffered in the last s+ 1 groups
of FM1’s at slot t− 1. Assume on the contrary that packet p
is buffered in the first k− s− 1 groups of FM1’s at slot t− 1,
say packet p is buffered in the ith group of FM1’s at slot t−1
for some 1 ≤ i ≤ k − s− 1. Then we have

Ui +Bi − 1 ≤ Ui+s − 1 < Uk − 1 < Uk = τ̃p(t− 1),

where the first inequality follows from (5) in (A2) and the
second inequality follows from U0 < U1 < · · · < Uk and
i+s < k. Thus, we have reached a contradiction to τ̃p(t−1) ≤
Ui +Bi − 1 in Lemma 2(ii).

We have just shown that packet p is buffered in the last s+1
groups of FM1’s at slot t− 1, say packet p is buffered in the
ith group of FM1’s at slot t−1 for some k−s ≤ i ≤ k. Let t′

be the slot that packet p is routed to the ith group of FM1’s for
the last time before or at slot t−1. As in the proof of (i) above,
we have t′ ≤ t− 1 ≤ t′ +Bi − 1. If t′ ≤ t− 1 ≤ t′ +Bi − 2,
then we have

τ̃p(t− 1) = τ̃p(t
′) + Σt−t′−1

ℓ=1 (τ̃p(t
′ + ℓ)− τ̃p(t

′ + ℓ− 1))

≤ Ui + (t− t′ − 1) · 1 ≤ Ui + (Bi − 2)

≤ Uk − 1 < Uk = τ̃p(t− 1),

where the first inequality follows from Li ≤ τ̃p(t
′) ≤ Ui

(according to the routing policy (R3)), Lemma 2(i), and t−t′−



13

1 ≥ 0, the second inequality follows from t− t′−1 ≤ Bi−2,
and the third inequality follows from (5) in (A2). Thus, we
have reached an apparent contradiction. As in the proof of (i)
above, it must be the case that t− 1 = t′ +Bi − 1 and packet
p must leave from the ith group of FM1’s at slot t, and we are
done. (In our illustration sample path in Figure 8(b), we have
s = 1 and k = 4: for the case that i = k − s = 3, see slot
t = 14 for such a loss packet; and for the case that i = 4 = k,
see slot t = 13 for such a loss packet.)

(iii) The flow conservation property (P3) is satisfied at slot
t. From the induction hypothesis and the results in (i) and (ii)
above, we see that the properties (P1) and (P2) are satisfied up
to slot t and the property (P3) is satisfied up to slot t−1. This
will be used to prove the following results: (a) There is no
buffer overflow at any FM1 at slot t. (b) There is no collision
at any input link of any FM1 at slot t. If this can be done,
then there is no internal packet loss in the system at slot t,
and hence the flow conservation property (P3) is satisfied at
slot t.

(a) There is no buffer overflow at any FM1 at slot t.
Consider the ith group of FM1’s, where 1 ≤ i ≤ k. From
Lemma 2(iii) and (6) in (A3), we know that the number of
packets buffered in or routed to the ith group of FM1’s at slot
t is at most |Ψi|+Bi − 1 ≤ miBi. As packets routed to the
ith group of FM1’s are evenly distributed to the mi FM1’s
in the ith group (according to the round-robin routing policy
(R3)), it is easy to see that the number of packets buffered
in or routed to each FM1 in the ith group at slot t is at most
⌈(miBi)/mi⌉ = Bi. Thus, there is no buffer overflow at any
FM1 in the ith group at slot t.

(b) There is no collision at any input link of any FM1 at slot
t. The proof consists of two steps. First, for each 1 ≤ j ≤ k,
we will identify the groups of FM1’s to which packets that
are from the output links of the jth group of FM1’s and have
to be buffered in the system at slot t can possibly be routed.
Second, for each 1 ≤ i ≤ k, we will use the results obtained
in the first step to show that packets routed to the ith group of
FM1’s at slot t can only come from either the arrival link or
the output links of the jth group of FM1’s at slot t for some
j1 ≤ j ≤ j2, where j1 and j2 are given by (2) and (3). The
proof involves a detailed counting argument and will be given
in Appendix A.

If this can be done, then there are at most Σj2
j=j1

mj + 1

packets routed to the ith group of FM1’s at slot t for all 1 ≤
i ≤ k. As there are mini input links at the ith group of FM1’s
and we have from (A1) that mini ≥ Σj2

j=j1
mj + 1, it follows

from the round-robin routing policy (R3) that there is at most
one packet routed to any input link of any FM1 in the ith

group of FM1’s at slot t for all 1 ≤ i ≤ k. Therefore, there is
no collision at any input link of any FM1 in the ith group of
FM1’s at slot t for all 1 ≤ i ≤ k, and the proof is completed.

For the scenario that each group of FM1’s in Figure 2 has
the same number of FM1’s, say mi = m for all 1 ≤ i ≤ k, the
condition (A1) can be simplified as follows. If k is even, say
k = 2ℓ, then ℓ = k/2 ≥ ⌈(s + 1)/2⌉ ≥ 1 and the condition

(A1) can be simplified as follows:

ni ≥


min{i+ s, ℓ+ 1} −max{i− 1, 1}+ 2,

if 1 ≤ i ≤ ℓ,

min{i+ 1, k} −max{i− s, ℓ}+ 2,

if ℓ+ 1 ≤ i ≤ k.

(11)

When 1 ≤ ℓ ≤ s, (11) can be expressed as

ni ≥


ℓ+ 2, if i = 1,

ℓ− i+ 4, if 2 ≤ i ≤ ℓ,

i− ℓ+ 3, if ℓ+ 1 ≤ i ≤ k − 1,

ℓ+ 2, if i = k.

(12)

When ℓ ≥ s+ 1, (11) can be expressed as

ni ≥



s+ 2, if i = 1,

s+ 3, if 2 ≤ i ≤ ℓ− s,

ℓ− i+ 4, if ℓ− s+ 1 ≤ i ≤ ℓ,

i− ℓ+ 3, if ℓ+ 1 ≤ i ≤ ℓ+ s,

s+ 3, if ℓ+ s+ 1 ≤ i ≤ k − 1,

s+ 2, if i = k.

(13)

On the other hand, if k is odd, say k = 2ℓ − 1, then ℓ =
(k + 1)/2 ≥ ⌈((s + 1) + 1)/2⌉ ≥ 2 and the condition (A1)
can be simplified as follows:

ni ≥



min{i+ s, ℓ} −max{i− 1, 1}+ 2,

if 1 ≤ i ≤ ℓ− 1,

4, if i = ℓ,

min{i+ 1, k} −max{i− s, ℓ}+ 2,

if ℓ+ 1 ≤ i ≤ k.

(14)

When 2 ≤ ℓ ≤ s+ 1, (14) can be expressed as

ni ≥



ℓ+ 1, if i = 1,

ℓ− i+ 3, if 2 ≤ i ≤ ℓ− 1,

4, if i = ℓ,

i− ℓ+ 3, if ℓ+ 1 ≤ i ≤ k − 1,

ℓ+ 1, if i = k.

(15)

When ℓ ≥ s+ 2, (14) can be expressed as

ni ≥



s+ 2, if i = 1,

s+ 3, if 2 ≤ i ≤ ℓ− s− 1,

ℓ− i+ 3, if ℓ− s ≤ i ≤ ℓ− 1,

4, if i = ℓ,

i− ℓ+ 3, if ℓ+ 1 ≤ i ≤ ℓ+ s,

s+ 3, if ℓ+ s+ 1 ≤ i ≤ k − 1,

s+ 2, if i = k.

(16)

Furthermore, for the scenario that each group of FM1’s in
Figure 2 has the same number of FM1’s and each FM1 in
Figure 2 has the same number of arrival links, say mi = m
and ni = n for all 1 ≤ i ≤ k, the condition (A1) can be
simplified as follows. If k is even, say k = 2ℓ, then we see
from (12) and (13) that

n ≥ min{ℓ+ 2, s+ 3} =

{
ℓ+ 2, if 1 ≤ ℓ ≤ s,

s+ 3, if ℓ ≥ s+ 1.
(17)
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On the other hand, if k is odd, say k = 2ℓ − 1, then we see
from (15) and (16) that

n ≥ min{max{ℓ+ 1, 4}, s+ 3}

=


4, if ℓ = 2,

ℓ+ 1, if 3 ≤ ℓ ≤ s+ 1,

s+ 3, if ℓ ≥ s+ 2.

(18)

It is easy to see that we can combine (17) and (18) into the
following condition for n:

n ≥

{
k + 1, if 2 ≤ k ≤ 3,

min{⌊k/2⌋+ 2, s+ 3}, if k ≥ 4.
(19)

B. Comparison With the Constructions in [37]

The constructions in [37] are for the scenario that each
group of FM1’s in Figure 2 has the same number of FM1’s and
each FM1 in Figure 2 has the same number of arrival links, say
mi = m and ni = n for all 1 ≤ i ≤ k. In the constructions
in [37, Theorem 7], the parameters n, B1, B2, . . . , Bk, and
|Ψ1|, |Ψ2|, . . . , |Ψk| have to satisfy the following conditions
(A1′)–(A3′):
(A1′) The condition for n:

n ≥ min{k + 1, 2s+ 2}. (20)

If k is even, say k = 2ℓ, then ℓ = k/2 ≥ ⌈(s+1)/2⌉ ≥
1 and (20) can be expressed as

n ≥

{
2ℓ+ 1, if 1 ≤ ℓ ≤ s,

2s+ 2, if ℓ ≥ s+ 1.
(21)

On the other hand, if k is odd, say k = 2ℓ − 1, then
ℓ = (k + 1)/2 ≥ ⌈((s + 1) + 1)/2⌉ ≥ 2 and (20) can
be expressed as

n ≥

{
2ℓ, if 2 ≤ ℓ ≤ s+ 1,

2s+ 2, if ℓ ≥ s+ 2.
(22)

(A2′) The condition for B1, B2, . . . , Bk: B1 = Bk = 1,

1 ≤ Bi ≤

{
Ui−1, if 2 ≤ i ≤ s+ 1,

Ui−1 − Ui−s−1, if s+ 2 ≤ i ≤ k,
(23)

and

1 ≤ Bi ≤

{
Ui+s − Ui, if 1 ≤ i ≤ k − s− 1,

Uk − Ui, if k − s ≤ i ≤ k − 1.
(24)

(A3′) The condition for |Ψ1|, |Ψ2|, . . . , |Ψk|:

1 ≤ |Ψi| ≤ (m− 1)Bi + 1 for all 1 ≤ i ≤ k, (25)

We claim that the condition for n in (20) is more restrictive
than that in (19). This can be proved as follows. If 2 ≤ k ≤ 3,
then both (19) and (20) give the same lower bound on n, i.e.,
n ≥ k + 1. If k ≥ 4 and s = 1, then both (19) and (20) give
the same lower bound on n, i.e., n ≥ 4. Finally, if k ≥ 4 and
2 ≤ s ≤ k − 1, then the lower bound in (19) is smaller than
that in (20) (this can be seen from (17), (18), (21), and (22)
as follows: if k is even, say k = 2ℓ, then we have from k ≥ 4
that ℓ ≥ 2, and hence the lower bound ℓ+2 in (17) is smaller

than the lower bound 2ℓ + 1 in (21) when 2 ≤ ℓ ≤ s, and
the lower bound s+3 in (17) is smaller than the lower bound
2s+2 in (21) when ℓ ≥ s+1; on the other hand, if k is odd,
say k = 2ℓ − 1, then we have from k ≥ 4 that ℓ ≥ 3, and
hence the lower bound ℓ+1 in (18) is smaller than the lower
bound 2ℓ in (22) when 3 ≤ ℓ ≤ s + 1, and the lower bound
s + 3 in (18) is smaller than the lower bound 2s + 2 in (22)
when ℓ ≥ s+ 2).

Also, it is apparent that the condition for B1, B2, . . . , Bk in
(23) and (24) is more restrictive than that in (4) and (5), and
condition for |Ψ1|, |Ψ2|, . . . , |Ψk| in (25) is the same as that
in (6) (with mi = m in (6) for 1 ≤ i ≤ k).

From the above arguments, we immediately see that our
constructions subsume those in [37] that satisfy (7) as special
cases. In particular, our constructions subsume the optimal
constructions in [37] as special cases (since the optimal
constructions in [37] satisfy (7)). Therefore, our constructions
can be regarded as an extension of those in [37] that satisfy
(7).

Moreover, our constructions generalize those in [37] from
the scenario that each group of FM1’s has the same number
of FM1’s and each FM1 has the same number of arrival links
to the scenario that each group of FM1’s may have a different
number of FM1’s and the FM1’s in different groups may
have different numbers of arrival links, i.e., m1,m2, . . . ,mk

can be different and n1, n2, . . . , nk can also be different. The
generalization will be used in Section V-C to show that our
constructions possess fault-tolerant capability.

V. OPTIMAL CONSTRUCTIONS WITH MINIMUM
CONSTRUCTION COMPLEXITIES AND MAXIMUM BUFFER

SIZES

In this section, we give an analysis on the optimal con-
structions that achieve minimum construction complexities and
maximum buffer sizes among the constructions in Theorem 1.
Due to the symmetry, i.e., i versus k − i+ 1 for all 1 ≤ i ≤
⌈k/2⌉, that can be observed from the conditions (A1)–(A3) in
Theorem 1, in our analysis we focus on the scenario that the
ith group and the (k − i + 1)th group of FM1’s in Figure 2
have the same number of FM1’s, i.e., mi = mk−i+1, for all
1 ≤ i ≤ ⌈k/2⌉. Such a scenario is general enough and includes
the scenario considered in [37] as a special case.

A. Optimal Constructions

In the following theorem, we give the parameters
n1, n2, . . . , nk, B1, B2, . . . , Bk, and |Ψ1|, |Ψ2|, . . . , |Ψk| for
the optimal construction that achieves minimum construction
complexity and maximum buffer size among the constructions
in Theorem 1 for the scenario that mi = mk−i+1 ≥ 2 for all
1 ≤ i ≤ ⌈k/2⌉.

Theorem 4 Suppose that 1 ≤ s ≤ k − 1 and mi =
mk−i+1 ≥ 2 for all 1 ≤ i ≤ ⌈k/2⌉. Then the parameters
n1, n2, . . . , nk, B1, B2, . . . , Bk, and |Ψ1|, |Ψ2|, . . . , |Ψk| for
the optimal construction that achieves minimum construction
complexity and maximum buffer size among the constructions
in Theorem 1 are given as follows:
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(A1∗) The optimal choice for n1, n2, . . . , nk:

ni = ⌈(Σj2
j=j1

mj + 1)/mi⌉, (26)

where j1 and j2 are given by (2) and (3) (note that j1
and j2 depend on i), for 1 ≤ i ≤ k.

(A2∗) The optimal choice for B1, B2, . . . , Bk: If s+1 ≤ k ≤
2s+ 2, then B1, B2, . . . , Bk are recursively given by

Bi = Bk−i+1 = Σi−1
j=1((mj − 1)Bj + 1) + 1

for 1 ≤ i ≤ ⌈k/2⌉, (27)

where we have adopted the convention that the sum is
zero if the upper limit is smaller than the lower limit
of a summation. On the other hand, if k ≥ 2s+3, then
B1, B2, . . . , Bk are recursively given by

Bi = Bk−i+1 =


Σi−1

j=1((mj − 1)Bj + 1) + 1,

if 1 ≤ i ≤ s+ 1,

Σi−1
j=i−s((mj − 1)Bj + 1),

if s+ 2 ≤ i ≤ ⌈k/2⌉.

(28)

Note that we have B1 = Bk = 1.
(A3∗) The optimal choice for |Ψ1|, |Ψ2|, . . . , |Ψk|:

|Ψi| = (mi − 1)Bi + 1 for 1 ≤ i ≤ k. (29)

Furthermore, the maximum buffer size Uk achieved by the
optimal construction is given by

Uk = Σk
i=1((mi − 1)Bi + 1). (30)

Proof. Since an optical FM1 can be operated as an optical
FM1 with a smaller number of arrival links, it is clear that
the construction complexity/cost of an optical FM1 increases
with the number of its arrival links. Thus, to minimize the
construction complexity of an optical FM1, we should choose
the number of its arrival links as small as possible. As such, it
is clear from (1) in the condition (A1) that we should choose
n1, n2, . . . , nk as given by (26) in (A1∗).

To maximize the buffer size Uk = Σk
i=1|Ψi| among the

constructions in Theorem 1, it is clear that we should choose
|Ψ1|, |Ψ2|, . . . , |Ψk| as large as possible. Thus, if (7) in the
condition (A3) is satisfied, then it is clear from (6) in the
condition (A3) that we should choose |Ψ1|, |Ψ2|, . . . , |Ψk| as
given by (29) in (A3∗).

So assume that we choose |Ψi| = (mi−1)Bi+1 for 1 ≤ i ≤
k as given by (29). Then the buffer size is Uk = Σk

i=1((mi −
1)Bi + 1) as given by (30). As such, it is clear from (30)
that we should choose B1, B2, . . . , Bk as large as possible in
order to maximize the buffer size Uk. As we have assumed
that mi = mk−i+1 for 1 ≤ i ≤ ⌈k/2⌉, it is easy to deduce
from (4) and (5) in the condition (A2) that we should choose
B1, B2, . . . , Bk as given by (27) and (28) in (A2∗).

It remains to show that the parameters B1, B2, . . . , Bk as
given by (27) and (28) and the parameters |Ψ1|, |Ψ2|, . . . , |Ψk|
as given by (29) satisfy (7) in the condition (A3). If 2 ≤ i ≤
⌈k/2⌉, then we have

|Ψi| = (mi − 1)Bi + 1 > Bi

≥ (mi−1 − 1)Bi−1 + 1 > Bi−1, (31)

where the equality follows from (29), the first inequality fol-
lows from the assumption that mi ≥ 2, the second inequality
follows from (27) and (28) (note that i ≥ 2 and s ≥ 1), and
the last inequality follows from the assumption that mi−1 ≥ 2.
On the other hand, if ⌊k/2⌋+ 1 ≤ i ≤ k − 1, then we have

|Ψi| = (mi − 1)Bi + 1 = (mk−i+1 − 1)Bk−i+1 + 1

= |Ψk−i+1| > Bk−i = Bk−(k−i)+1 = Bi+1, (32)

where the first equality follows from (29), the second equality
follows from mi = mk−i+1 in the assumption and Bi =
Bk−i+1 in (27) and (28), the third equality follows from (29),
the inequality follows from 2 ≤ k−i+1 ≤ k−⌊k/2⌋ = ⌈k/2⌉
and (31), and the fourth equality follows from (27) and (28).
By combining (31) and (32), we obtain (7).

Remark 5 (i) For the scenario that each group of FM1’s in
Figure 2 has the same number of FM1’s, say mi = m ≥ 2 for
all 1 ≤ i ≤ k, we see from Theorem 4 that the optimal choice
for n1, n2, . . . , nk is given by (11)–(16) (with the inequalities
in (11)–(16) replaced by equalities), the optimal choice for
B1, B2, . . . , Bk is given by (27) and (28) (with mi = m
in (27) and (28) for 1 ≤ i ≤ k), the optimal choice for
|Ψ1|, |Ψ2|, . . . , |Ψk| is given by (29) (with mi = m in (29)
for 1 ≤ i ≤ k), and the maximum buffer size Uk achieved by
the optimal construction is given by (30) (with mi = m in
(30) for 1 ≤ i ≤ k).

(ii) Furthermore, for the scenario that each group of FM1’s
in Figure 2 has the same number of FM1’s and each FM1 in
Figure 2 has the same number of arrival links, say mi =
m ≥ 2 and ni = n for all 1 ≤ i ≤ k, we also see from
Theorem 4 that the optimal choice for n is given by (19) (with
the inequality in (19) replaced by equality), the optimal choice
for B1, B2, . . . , Bk is given by (27) and (28) (with mi =
m in (27) and (28) for 1 ≤ i ≤ k), the optimal choice for
|Ψ1|, |Ψ2|, . . . , |Ψk| is given by (29) (with mi = m in (29) for
1 ≤ i ≤ k), and the maximum buffer size Uk achieved by the
optimal construction is given by (30) (with mi = m in (30)
for 1 ≤ i ≤ k).

B. Maximum Buffer Size for the Scenario that Each Group
Has the Same Number of FM1’s

In the following theorem, we consider the scenario that each
group has the same number of FM1’s, say mi = m ≥ 2 for
all 1 ≤ i ≤ k. We show that the parameters B1, B2, . . . , Bk

given by (27) and (28) (with mi = m in (27) and (28) for
1 ≤ i ≤ k) can be obtained in closed form as follows.

Theorem 6 Suppose that 1 ≤ s ≤ k − 1 and mi = m ≥ 2
for 1 ≤ i ≤ k. Also suppose that B1, B2, . . . , Bk are given
by (27) and (28) (with mi = m in (27) and (28) for 1 ≤
i ≤ k). Let qi be the unique nonnegative integer such that
qi(s+1)+1 ≤ i ≤ (qi +1)(s+1), i.e., qi = ⌈i/(s+1)⌉− 1,
for 1 ≤ i ≤ ⌈k/2⌉.
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(i) If 2 ≤ i ≤ ⌈k/2⌉, then Bi and Bk−i+1 can be recursively
given as follows:

Bi = Bk−i+1

=


mBi−1 + 1, if 2 ≤ i ≤ s+ 1,

mBi−1 − (m− 1)Bi−s−1 − 1, if i = s+ 2,

mBi−1 − (m− 1)Bi−s−1, if i ≥ s+ 3.

(33)

(ii) If 1 ≤ i ≤ ⌈k/2⌉, then Bi and Bk−i+1 can be expressed
in closed form as follows:

Bi = Bk−i+1

= Σqi
j=0(−1)j(1/j!)

×[j(i− j(s+ 1))j−1 +m(i− j(s+ 1))j ]

×(m− 1)j−1mi−j(s+1)−1 − 1/(m− 1), (34)

where (a)j is the Pochhammer symbol given by (a)−1 =
(a)0 = 1 and (a)j = a(a + 1)(a + 2) · · · (a + j − 1) for
every positive integer j.

Proof. See Appendix B.

Remark 7 It is easy to see from (34) and qi = 0 for 1 ≤ i ≤
s+ 1 that

Bi = Bk−i+1 = (mi − 1)/(m− 1)

for 1 ≤ i ≤ min{⌈k/2⌉, s+ 1}. (35)

Thus, we have from (35) and m ≥ 2 the following upper bound
and lower bound for Bi:

mi−1 ≤ Bi ≤ 2mi−1 for 1 ≤ i ≤ min{⌈k/2⌉, s+ 1}. (36)

For the special case that s = 1, a simpler closed-form
expression for B1, B2, . . . , Bk given by (27) and (28) (with
mi = m in (27) and (28) for 1 ≤ i ≤ k) can be obtained as
follows.

Theorem 8 Suppose that s = 1, k ≥ 2, and mi = m ≥ 2
for 1 ≤ i ≤ k. Also suppose that B1, B2, . . . , Bk are given by
(27) and (28) (with mi = m in (27) and (28) for 1 ≤ i ≤ k).
Then we have

Bi = Bk−i+1

=


1, if i = 1,

i+ 1, if m = 2 and 2 ≤ i ≤ ⌈k/2⌉,
((m2 −m− 1)(m− 1)i−2 − 1)/(m− 2),

if m ≥ 3 and 2 ≤ i ≤ ⌈k/2⌉.

(37)

Proof. Since we have Bi = Bk−i+1 for 1 ≤ i ≤ ⌈k/2⌉ in
(27) and (28), it suffices to show that Bi is given by (37) for
1 ≤ i ≤ ⌈k/2⌉. We will show that Bi is given by (38) below
(as (37) follows trivially from (38)):

Bi =


1, if i = 1,

Σi−1
j=0(m− 1)j + (m− 1)i−2,

if 2 ≤ i ≤ ⌈k/2⌉.
(38)

As we have from (27) and (28) (with mi = m in (27) and
(28) for 1 ≤ i ≤ k) that B1 = 1, (38) holds for i = 1. If k = 2,

then we are done. So assume that k ≥ 3. In the following, we
prove by induction on i that (38) holds for 2 ≤ i ≤ ⌈k/2⌉.

It is clear from (27) and (28) (with mi = m in (27) and (28)
for 1 ≤ i ≤ k) that B2 = ((m− 1)B1 + 1) + 1 = m+ 1, and
hence (38) holds for i = 2. Assume as the induction hypothesis
that (38) holds for i−1 for some 2 ≤ i−1 ≤ ⌈k/2⌉−1. Then
we have from (28) (note that s = 1 and s+2 = 3 ≤ i ≤ ⌈k/2⌉)
and the induction hypothesis that

Bi = (m− 1)Bi−1 + 1

= (m− 1)
(
Σi−2

j=0(m− 1)j + (m− 1)i−3
)
+ 1

= Σi−1
j=0(m− 1)j + (m− 1)i−2.

The proof is completed.
In the following theorem, we show that the maximum buffer

size Uk given by (30) (with mi = m in (30) for 1 ≤ i ≤ k) can
be obtained in closed form by using the results in Theorem 6
and Theorem 8.

Theorem 9 Suppose that 1 ≤ s ≤ k − 1 and mi = m ≥ 2
for 1 ≤ i ≤ k. Also suppose that B1, B2, . . . , Bk are given by
(27) and (28) (with mi = m in (27) and (28) for 1 ≤ i ≤ k),
and Uk is given by (30) (with mi = m in (30) for 1 ≤ i ≤ k).

(i) Suppose that k = 2. Then we have

Uk = 2m. (39)

(ii) Suppose that s = 1, k ≥ 3, and m = 2. If k is even,
say k = 2ℓ for some ℓ ≥ 2 (note that k ≥ 3), then we have

Uk = ℓ2 + 5ℓ− 2. (40)

On the other hand, if k is odd, say k = 2ℓ−1 for some ℓ ≥ 2
(note that k ≥ 3), then we have

Uk = ℓ2 + 4ℓ− 4. (41)

(iii) Suppose that s = 1, k ≥ 3, and m ≥ 3. If k is even,
say k = 2ℓ for some ℓ ≥ 2 (note that k ≥ 3), then we have

Uk = [2(m2 −m− 1)(m− 1)ℓ − 4(m− 1)2

−2(ℓ− 1)(m− 1) + 2ℓ]/(m− 2)2. (42)

On the other hand, if k is odd, say k = 2ℓ−1 for some ℓ ≥ 2
(note that k ≥ 3), then we have

Uk = [m(m2 −m− 1)(m− 1)ℓ−1 − 4(m− 1)2

−(2ℓ− 3)(m− 1) + 2ℓ− 1]/(m− 2)2. (43)

(iv) Suppose that s ≥ 2 and s+1 ≤ k ≤ 2s+2. If k is even,
say k = 2ℓ for some ⌈(s+1)/2⌉ ≤ ℓ ≤ ⌊(2s+2)/2⌋ = s+1,
then we have

Uk = 2m(mℓ − 1)/(m− 1). (44)

On the other hand, if k is odd, say k = 2ℓ − 1 for some
⌈(s+ 2)/2⌉ ≤ ℓ ≤ ⌊(2s+ 3)/2⌋ = s+ 1, then we have

Uk = m(mℓ +mℓ−1 − 2)/(m− 1). (45)

(v) Suppose that s ≥ 2 and k ≥ 2s+3. Then B1, B2, . . . , Bk

are given in closed form in (34). If k is even, say k = 2ℓ for
some ℓ ≥ ⌈(2s+ 3)/2⌉ = s+ 2, then we have

Uk = 2mΣqℓ
r=0Bℓ−r(s+1) + 2qℓ. (46)
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On the other hand, if k is odd, say k = 2ℓ − 1 for some
ℓ ≥ ⌈(2s+ 4)/2⌉ = s+ 2, then we have

Uk = 2mΣqℓ
r=1Bℓ−r(s+1) + (m+ 1)Bℓ + 2qℓ − 1. (47)

Proof. (i) As k = 2, we have s = 1 (as 1 ≤ s ≤ k − 1 = 1)
and hence it is clear from (37) that B1 = B2 = 1. It then
follows from (30) (with mi = m in (30) for 1 ≤ i ≤ 2) that

Uk =

2∑
i=1

((m− 1) · 1 + 1) = 2m.

Thus, we have obtained (39).
(ii) As s = 1, k ≥ 3, and m = 2, we have from (37) that

B1 = Bk = 1 and Bi = Bk−i+1 = i+ 1 for 2 ≤ i ≤ ⌈k/2⌉.
If k is even, say k = 2ℓ for some ℓ ≥ 2, then we have from
(30) (with mi = m in (30) for 1 ≤ i ≤ k) that

Uk = 2
[
2 + Σℓ

i=2(i+ 2)
]
= ℓ2 + 5ℓ− 2.

Thus, we have obtained (40).
On the other hand, if k is odd, say k = 2ℓ − 1 for some

ℓ ≥ 2, then we have from (30) (with mi = m in (30) for
1 ≤ i ≤ k) that

Uk = 2
[
2 + Σℓ−1

i=2(i+ 2)
]
+ (ℓ+ 2) = ℓ2 + 4ℓ− 4.

Thus, we have obtained (41).
(iii) As s = 1, k ≥ 3, and m ≥ 3, we have from (37)

that B1 = Bk = 1 and Bi = Bk−i+1 = ((m2 −m− 1)(m−
1)i−2−1)/(m−2) for 2 ≤ i ≤ ⌈k/2⌉. If k is even, say k = 2ℓ
for some ℓ ≥ 2, then we have from (30) (with mi = m in
(30) for 1 ≤ i ≤ k) that

Uk = 2m+ 2Σℓ
i=2[(m− 1)((m2 −m− 1)(m− 1)i−2 − 1)

/(m− 2) + 1]

= [2(m2 −m− 1)(m− 1)ℓ − 4(m− 1)2

−2(ℓ− 1)(m− 1) + 2ℓ]/(m− 2)2.

Thus, we have obtained (42).
On the other hand, if k is odd, say k = 2ℓ − 1 for some

ℓ ≥ 2, then we have from (30) (with mi = m in (30) for
1 ≤ i ≤ k) that

Uk = 2m+ 2Σℓ−1
i=2 [(m− 1)((m2 −m− 1)(m− 1)i−2 − 1)

/(m− 2) + 1]

+(m− 1)((m2 −m− 1)(m− 1)ℓ−2 − 1)/(m− 2)

+1

= [m(m2 −m− 1)(m− 1)ℓ−1 − 4(m− 1)2

−(2ℓ− 3)(m− 1) + 2ℓ− 1]/(m− 2)2.

Thus, we have obtained (43).
(iv) As k ≤ 2s+2, we have from (35) that Bi = Bk−i+1 =

(mi−1)/(m−1) for 1 ≤ i ≤ min{⌈k/2⌉, s+1} = ⌈k/2⌉. If k
is even, say k = 2ℓ for some ⌈(s+1)/2⌉ ≤ ℓ ≤ ⌊(2s+2)/2⌋ =
s + 1, then we have from (30) (with mi = m in (30) for
1 ≤ i ≤ k) and ⌈k/2⌉ = ℓ that

Uk = 2Σℓ
i=1((m

i − 1) + 1) = 2m(mℓ − 1)/(m− 1).

Thus, we have obtained (44).

On the other hand, if k is odd, say k = 2ℓ − 1 for some
⌈(s+ 2)/2⌉ ≤ ℓ ≤ ⌊(2s+ 3)/2⌋ = s+ 1, then we have from
(30) (with mi = m in (30) for 1 ≤ i ≤ k) and ⌈k/2⌉ = ℓ that

Uk = 2Σℓ−1
i=1((m

i − 1) + 1) + (mℓ − 1) + 1

= m(mℓ +mℓ−1 − 2)/(m− 1).

Thus, we have obtained (45).
(v) From Theorem 6, we know that B1, B2, . . . , Bk are

given in closed form in (34). First consider the case that k
is even, say k = 2ℓ for some ℓ ≥ ⌈(2s+3)/2⌉ = s+2. Then
we have from (30) (with mi = m in (30) for 1 ≤ i ≤ k) that

Uk = 2Σℓ
j=1((m− 1)Bj + 1)

= 2[Σ
ℓ−qℓ(s+1)
j=1 ((m− 1)Bj + 1)

+Σqℓ−1
r=0 Σ

ℓ−r(s+1)
j=ℓ−(r+1)(s+1)+1((m− 1)Bj + 1)]. (48)

It is easy to see from (28) (note that k ≥ 2s + 3 and 1 ≤
ℓ− qℓ(s+ 1) ≤ s+ 1) that

Σ
ℓ−qℓ(s+1)
j=1 ((m− 1)Bj + 1)

= Σ
ℓ−qℓ(s+1)−1
j=1 ((m− 1)Bj + 1) + (m− 1)Bℓ−qℓ(s+1) + 1

= (Bℓ−qℓ(s+1) − 1) + (m− 1)Bℓ−qℓ(s+1) + 1

= mBℓ−qℓ(s+1). (49)

For 0 ≤ r ≤ qℓ − 1, we also have from (28) (note that k ≥
2s+3 and ℓ−r(s+1) ≥ (qℓ(s+1)+1)−(qℓ−1)(s+1) = s+2)
that

Σ
ℓ−r(s+1)
j=ℓ−(r+1)(s+1)+1((m− 1)Bj + 1)

= Σ
ℓ−r(s+1)−1
j=ℓ−(r+1)(s+1)+1((m− 1)Bj + 1)

+(m− 1)Bℓ−r(s+1) + 1

= Bℓ−r(s+1) + (m− 1)Bℓ−r(s+1) + 1

= mBℓ−r(s+1) + 1. (50)

By substituting (49) and (50) into (48), we obtain (46).
Now consider the case that k is odd, say k = 2ℓ − 1 for

some ℓ ≥ ⌈(2s + 4)/2⌉ = s + 2. Then we have from (30)
(with mi = m in (30) for 1 ≤ i ≤ k) and (46) that

Uk = 2Σℓ−1
j=1((m− 1)Bj + 1) + ((m− 1)Bℓ + 1)

= 2Σℓ
j=1((m− 1)Bj + 1)− ((m− 1)Bℓ + 1)

= 2mΣqℓ
r=0Bℓ−r(s+1) + 2qℓ − ((m− 1)Bℓ + 1)

= 2mΣqℓ
r=1Bℓ−r(s+1) + (m+ 1)Bℓ + 2qℓ − 1.

Thus, we have obtained (47).

C. Fault-Tolerant Capability of Our Constructions

Fault-tolerance is an important practical issue in the design
of any network element, and it deals with the situation
that some of the components of a network element fail to
function properly. Without taking the fault-tolerant capability
into consideration during the design phase, a network element
consisting of hundreds or thousands of components may be in
a total breakdown even when only a single component fails to
function properly.

In the following theorem, we consider the scenario that each
group of FM1’s in Figure 2 has the same number of FM1’s and
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each FM1 in Figure 2 has the same number of arrival links,
and show that the optimal constructions given in Remark 5(ii)
possess fault-tolerant capability.

Theorem 10 Suppose that 1 ≤ s ≤ k − 1, and mi = m ≥ 2
and ni = n for 1 ≤ i ≤ k. Then the optimal construction
given in Remark 5(ii) possess fault-tolerant capability and can
tolerate up to f broken FM1’s, i.e., the feedback system in
Figure 2 can still be operated as an optical priority queue
with a smaller buffer size after up to f FM1’s fail to function
properly, where f = ⌊(m− 1)/(n− 1)⌋.

Proof. Recall that for the optimal construction given in
Remark 5(ii), n is given by (19) (with the inequality in (19)
replaced by equality), B1, B2, . . . , Bk are given by (27) and
(28) (with mi = m in (27) and (28) for 1 ≤ i ≤ k),
|Ψ1|, |Ψ2|, . . . , |Ψk| are given by (29) (with mi = m in (29)
for 1 ≤ i ≤ k), and the maximum buffer size Uk achieved by
the optimal construction is given by (30) (with mi = m in
(30) for 1 ≤ i ≤ k).

Assume that there are fi broken FM1’s in the ith group of
FM1’s in Figure 2 for 1 ≤ i ≤ k, where Σk

i=1fi ≤ f . Let
f ′
i = max{fi, fk−i+1} and m′

i = m − f ′
i for 1 ≤ i ≤ k.

Then it is clear that f ′
i = f ′

k−i+1 ≤ f and m′
i = m′

k−i+1 for
1 ≤ i ≤ ⌈k/2⌉. For 1 ≤ i ≤ k, we have

m′
i = m− f ′

i

≥ m− f = m− ⌊(m− 1)/(n− 1)⌋
= ⌈m− (m− 1)/(n− 1)⌉ ≥ ⌈m− (m− 1)/2⌉
= ⌈(m+ 1)/2⌉ ≥ 2,

where the first inequality follows from f ′
i ≤ f , the second

inequality follows from n ≥ 3 in (19) (with the inequality
in (19) replaced by equality), and the third inequality follows
from m ≥ 2.

We claim that n1, n2, . . . , nk and m′
1,m

′
2, . . . ,m

′
k satisfy

the condition (A1). To see this, suppose that 1 ≤ i ≤ k. Let
j1 and j2 be given by (2) and (3) (note that j1 and j2 depend
on i). Then we have

Σj2
j=j1

m′
j + 1 = Σj2

j=j1
(m− f ′

j) + 1

= (j2 − j1 + 1)m− Σj2
j=j1

f ′
j + 1

= (j2 − j1 + 1)(m′
i + f ′

i)− Σj2
j=j1

f ′
j + 1

≤ (n− 1)(m′
i + f)− f ′

i + 1

≤ (n− 1)m′
i + (m− 1)− f ′

i + 1

= (n− 1)m′
i +m′

i = n ·m′
i, (51)

where the first inequality follows from n = ni ≥ j2 − j1 + 2
in (1) (with mj = m in (1) for 1 ≤ j ≤ k), f ′

i ≤ f , and
Σj2

j=j1
f ′
j ≥ f ′

i (as j1 ≤ i ≤ j2), and the second inequality
follows from f = ⌊(m − 1)/(n − 1)⌋ ≤ (m − 1)/(n − 1).
Thus, we have ni = n ≥ ⌈(Σj2

j=j1
m′

j + 1)/m′
i⌉.

Let B′
1, B

′
2, . . . , B

′
k be given by (27) and (28) (with mi

in (27) and (28) replaced by m′
i for 1 ≤ i ≤ k), and let

|Ψ′
1|, |Ψ′

2|, . . . , |Ψ′
k| be given by (29) (with mi in (29) replaced

by m′
i for 1 ≤ i ≤ k). Then (4) and (5) in the condition

(A2) and (6) in the condition (A3) are satisfied. By using
the same argument as that in the last paragraph in the proof

of Theorem 4, we see that (7) in the condition (A3) is also
satisfied.

Since it is clear from m′
i = m − f ′

i ≤ m that B′
i ≤ Bi,

we see that the nFM1’s with buffer size Bi can be used as
nFM1’s with buffer size B′

i for 1 ≤ i ≤ k. Therefore, we
have from Theorem 1 that the feedback system in Figure 2
can still be operated as an optical priority queue with buffer
size U ′

k = Σk
i=1((m

′
i − 1)B′

i + 1)). Note that we have from
m′

i ≤ m and B′
i ≤ Bi for 1 ≤ i ≤ k that

U ′
k = Σk

i=1((m
′
i − 1)B′

i + 1))

≤ Σk
i=1((m− 1)Bi + 1))

= Uk.

The proof is completed.

VI. COMPLEXITY ANALYSIS AND NUMERICAL RESULTS

In this section, we perform a complexity analysis for our
constructions and present our numerical results.

A. Constructions by Using a Single Optical Crossbar Switch
and Multiple Optical Fiber Delay Lines

In the following theorem, we show that the constructions
in Theorem 1 by using a single optical crossbar switch and
multiple optical FM1’s as in Figure 2 can be implemented
by using a single optical crossbar switch and multiple optical
fiber delay lines as in Figure 1.

Theorem 11 Suppose that 1 ≤ s ≤ k − 1 and m1,m2, . . .,
mk ≥ 1. Also suppose that the parameters n1, n2, . . . , nk,
B1, B2, . . . , Bk, and |Ψ1|, |Ψ2|, . . . , |Ψk| satisfy the condi-
tions (A1)–(A3). Then an optical priority queue with buffer
size Uk = Σk

i=1|Ψi| can be constructed by using a feedback
system consisting of an optical (M + 2)× (M + 2) crossbar
switch and M optical fiber delay lines as in Figure 1, where

M = Σk
i=1mi((ni − 1)⌈logni

Bi⌉+ ni + 1). (52)

Proof. To prove the theorem, we use the best constructions
currently available in the literature, i.e., the constructions in ,
to implement the optical FM1’s in Figure 2.

For convenience, we let ℓ = ⌈logn B⌉ in the rest of the
proof. It is clear that the multi-stage feedforward construction
of a self-routing optical nFM with buffer size B − 1 in [13,
Figure 3] can be converted into a feedback system consisting
of an optical ((n− 1)ℓ+ n)× ((n− 1)ℓ+ n) crossbar switch
and (n− 1)ℓ optical fiber delay lines (see Figure 9). The self-
routing of a packet is based on the delay of that packet, which
is known upon its arrival. Specifically, suppose that the delay
of an arrival packet, say packet p, at slot t is d slots, where
0 ≤ d ≤ B + n − 2. If B ≤ d ≤ B + n − 2, then packet
p is routed to loss link d − B + 1 immediately at slot t. On
the other hand, if 0 ≤ d ≤ B − 1, then we write the n-ary
expansion of the delay d as d = j1n

i1 + j2n
i2 + · · ·+ jrn

ir ,
where 0 ≤ r ≤ ℓ, 0 ≤ i1 < i2 < · · · < ir ≤ ℓ − 1, and
1 ≤ j1, j2, . . . , jr ≤ n−1. We route packet p to the fiber delay
line with delay j1n

i1 at slot t, to the fiber delay line with delay
j2n

i2 at slot t + j1n
i1 , . . ., to the fiber delay line with delay
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Fig. 9. A construction of a self-routing optical n-to-1 FIFO multiplexer (nFM) with buffer size B − 1 by using a feedback system consisting of an optical
((n− 1)ℓ+ n)× ((n− 1)ℓ+ n) (bufferless) crossbar switch and (n− 1)ℓ optical fiber delay lines, where ℓ = ⌈logn B⌉.

jrn
ir at slot t+j1n

i1 +j2n
i2 + · · ·+jr−1n

ir−1 , and finally to
the departure link at slot t+j1n

i1 +j2n
i2 + · · ·+jrn

ir = t+d
so that packet p departs from the queue exactly d slots after
its arrival.

Since an nFM1 with buffer size B is the concatenation of
an nFM with buffer size B − 1 and a delay line with delay
equal to one as in Figure 4, it is easy to see that an optical
nFM1 with buffer size B can be implemented by adding an
extra pair of input/output links and an optical fiber delay line
with delay equal to one (between the extra pair of input/output
links) to the switch in Figure 9. This means that an optical
nFM1 with buffer size B can be implemented by using an
optical ((n−1)ℓ+n+1)× ((n−1)ℓ+n+1) crossbar switch
and (n− 1)ℓ+ 1 optical fiber delay lines.

As a result, by using (ni − 1)⌈logni
Bi⌉+ ni + 1 pairs of

input/output links for the implementation of each niFM1 in
the ith group for i = 1.2 . . . , k, we see that the constructions
in Figure 2 can be implemented by using a feedback system
consisting of an optical (M + 2) × (M + 2) crossbar switch
and M optical fiber delay lines as in Figure 10, where M =
Σk

i=1mi((ni − 1)⌈logni
Bi⌉+ ni + 1) as given by (52).

For the scenario that each group of FM1’s in Figure 2 has
the same number of FM1’s and each FM1 in Figure 2 has the

same number of arrival links, say mi = m ≥ 2 and ni = n for
1 ≤ i ≤ k, we show that the maximum buffer size Uk (which
is given by (30) with mi = m for 1 ≤ i ≤ k) achieved by the
optimal construction can be expressed in terms of the switch
size M (which is given by (52) with mi = m and ni = n for
1 ≤ i ≤ k) as 2O(

√
αM), where α is a constant that depends

on the parameters s, k, and m used in the constructions.

Theorem 12 Suppose that 1 ≤ s ≤ k − 1, and mi = m ≥ 2
and ni = n for 1 ≤ i ≤ k. Also suppose that n is given
by (19) (with the inequality in (19) replaced by equality),
B1, B2, . . . , Bk are given by (27) and (28) (with mi = m
in (27) and (28) for 1 ≤ i ≤ k), Uk is given by (30) (with
mi = m in (30) for 1 ≤ i ≤ k), and M is given by (52) (with
mi = m and ni = n in (52) for 1 ≤ i ≤ k).

(i) Suppose that k = 2. Then we have

Uk = M/4. (53)

(ii) Suppose that s = 1, k ≥ 3, and m = 2. Then we have

M/7 ≤ Uk ≤ (M/8)2. (54)
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Fig. 10. A construction of an optical priority queue by using a feedback system consisting of an optical (M + 2) × (M + 2) (bufferless) crossbar switch
and M optical fiber delay lines, where M = Σk

i=1miMi as given by (52), in which Mi = (ni − 1)ℓi + ni + 1 and ℓi = ⌈logni
Bi⌉ for i = 1, 2, . . . , k.

For i = 1, 2, . . . , k, the delays di,j , j = 1, 2, . . . ,Mi, are given by di,(ni−1)i′+j′ = j′ni′
i for 0 ≤ i′ ≤ ℓi − 1 and 1 ≤ j′ ≤ ni − 1, di,(ni−1)ℓi+1 = 1,

and di,(ni−1)ℓi+2 = di,(ni−1)ℓi+3 = · · · = di,Mi
= 0.

(iii) Suppose that s = 1, k ≥ 3, and m ≥ 3. If k is even,
say k = 2ℓ for some ℓ ≥ 2 (note that k ≥ 3), then we have

2
√

2M log2 (m−1)/(3m)−7 log2 (m−1)+1

≤ Uk ≤ 2
√

2M log2 (m−1)/(3m)+log2(10(m−1)). (55)

On the other hand, if k is odd, say k = 2ℓ−1 for some ℓ ≥ 2
(note that k ≥ 3), then we have

2
√

2M log2 (m−1)/(3m)−7 log2 (m−1)

≤ Uk ≤ 2
√

2M log2 (m−1)/(3m)+log2(9(m−1)). (56)

Therefore, we have

Uk = 2O(
√

2M log2 (m−1)/(3m)). (57)

(iv) Suppose that s ≥ 2 and s+ 1 ≤ k ≤ 2s+ 2. Then we
have

n =

{
4, if k = 3,

⌊k/2⌋+ 2, if max{s+ 1, 4} ≤ k ≤ 2s+ 2.
(58)

If k is even, say k = 2ℓ for some ⌈(s + 1)/2⌉ ≤ ℓ ≤ ⌊(2s +
2)/2⌋ = s+ 1, then we have

2
√

M log2 n log2 m/((n−1)m)−4 log2 n+1

≤ Uk ≤ 2
√

M log2 n log2 m/((n−1)m)+log2 m+2. (59)

On the other hand, if k is odd, say k = 2ℓ − 1 for some
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⌈(s+ 2)/2⌉ ≤ ℓ ≤ ⌊(2s+ 3)/2⌋ = s+ 1, then we have

2
√

M log2 n log2 m/((n−1)m)−4 log2 n

≤ Uk ≤ 2
√

M log2 n log2 m/((n−1)m)+log2 (3m). (60)

Therefore, we have

Uk = 2O(
√

M log2 n log2 m/((n−1)m)). (61)

(v) Suppose that s ≥ 2 and k ≥ 2s+ 3. Then we have

mi−s−1 ≤ Bi ≤ 2mi−1,

for s+ 2 ≤ i ≤ (ms+1 − 1)/(m− 1) + s. (62)

If k is even, say k = 2ℓ for some ℓ ≥ ⌈(2s+ 3)/2⌉ = s+ 2,
and ℓ ≤ (ms+1 − 1)/(m− 1) + s, then we have

2
√

M log2 (s+3) log2 m/((s+2)m)−4 log2 (s+3)−s log2 m+1

≤ Uk ≤ 2
√

M log2 (s+3) log2 m/((s+2)m)+(s+1) log2 m+log2 6.(63)

On the other hand, if k is odd, say k = 2ℓ − 1 for some
ℓ ≥ ⌈(2s+ 4)/2⌉ = s+ 2, and ℓ ≤ (ms+1 − 1)/(m− 1) + s,
then we have

2
√

M log2 (s+3) log2 m/((s+2)m)−4 log2 (s+3)−s log2 m

≤ Uk ≤ 2
√

M log2 (s+3) log2 m/((s+2)m)+(s+1) log2 m+log2 6.(64)

Therefore, we have

Uk = 2O(
√

M log2 (s+3) log2 m/((s+2)m)). (65)

Proof. (i) As k = 2, it is clear from (19) (with the inequality
in (19) replaced by equality) that n = k + 1 = 3. Since we
know from the proof of Theorem 9(i) that B1 = B2 = 1, it
then follows from (52) (with mi = m and ni = n in (52) for
1 ≤ i ≤ 2) that

M = m

2∑
i=1

(2 ⌈log3 1⌉+ 4) = 8m. (66)

By combining (39) and (66), we obtain Uk = M/4 in (53).
(ii) As s = 1 and k ≥ 3, it is clear from (19) (with the

inequality in (19) replaced by equality) that n = 4 (if k = 3,
then we have n = k + 1 = 4; on the other hand, if k ≥ 4,
then we have n = min{⌊k/2⌋ + 2, 4} = 4). We also know
from the proof of Theorem 9(ii) that B1 = Bk = 1 and Bi =
Bk−i+1 = i+ 1 for 2 ≤ i ≤ ⌈k/2⌉.

First consider the case that k is even, say k = 2ℓ for some
ℓ ≥ 2. From (52) (with mi = m and ni = n in (52) for
1 ≤ i ≤ k) and m = 2, we have

M = 2
[
2(3 ⌈log4 1⌉+ 5) + 2Σℓ

i=2(3 ⌈log4 (i+ 1)⌉+ 5)
]

= 12
[
Σℓ′

j=1j(4
j − 4j−1) + (ℓ′ + 1)(ℓ+ 1− 4ℓ

′
)
]

+20ℓ− 12

= 4ℓ(3ℓ′ + 8) + 12ℓ′ − 4ℓ
′+2 + 4, (67)

where ℓ′ is the unique nonnegative integer such that 4ℓ
′
+1 ≤

ℓ + 1 ≤ 4ℓ
′+1. From (67), 0 ≤ ℓ′ ≤ log4 ℓ ≤ (ℓ − 1)/2, and

(40), we have

M ≤ 4ℓ(3ℓ′ + 8) + 12ℓ′ − 4ℓ

≤ 6ℓ(ℓ− 1) + 6(ℓ− 1) + 28ℓ

= 6ℓ2 + 28ℓ− 6 ≤ 7Uk, (68)
M ≥ 4ℓ(3ℓ′ + 8) + 12ℓ′ − 16ℓ+ 4

≥ 16ℓ+ 4 ≥ 8
√
Uk. (69)

By combining (68) and (69), we obtain M/7 ≤ Uk ≤ (M/8)2

in (54).
Now consider the case that k is odd, say k = 2ℓ − 1 for

some ℓ ≥ 3. From (52) (with mi = m and ni = n in (52) for
1 ≤ i ≤ k) and m = 2, we have

M = 2
[
2(3 ⌈log4 1⌉+ 5) + 2Σℓ−1

i=2(3 ⌈log4 (i+ 1)⌉+ 5)

+(3 ⌈log4 (ℓ+ 1)⌉+ 5)]

= 12
[
Σℓ′

j=1j(4
j − 4j−1) + (ℓ′ + 1)(ℓ− 4ℓ

′
)
]

+6 ⌈log4 (ℓ+ 1)⌉+ 20ℓ− 22

= 4ℓ(3ℓ′ + 8)− 4ℓ
′+2 + 6 ⌈log4 (ℓ+ 1)⌉ − 18, (70)

where ℓ′ is the unique nonnegative integer such that 4ℓ
′
+1 ≤

ℓ ≤ 4ℓ
′+1. From (70), 0 ≤ ℓ′ ≤ log4 (ℓ− 1) ≤ (ℓ−2)/2 (note

that ℓ ≥ 3), and (41), we have

M ≤ 4ℓ(3ℓ′ + 8)− 4ℓ+ 6(ℓ′ + 2)− 18

≤ 6ℓ(ℓ− 2) + 28ℓ+ 3(ℓ− 2)− 6

= 6ℓ2 + 19ℓ− 12 ≤ 7Uk, (71)
M ≥ 4ℓ(3ℓ′ + 8)− 16(ℓ− 1) + 6(ℓ′ + 1)− 18

≥ 16ℓ+ 4 ≥ 8
√
Uk. (72)

By combining (71) and (72), we also obtain M/7 ≤ Uk ≤
(M/8)2 in (54).

(iii) As s = 1 and k ≥ 3, it is clear from (19) (with the
inequality in (19) replaced by equality) that n = 4. We also
know from the proof of Theorem 9(iii) that B1 = Bk = 1 and
Bi = Bk−i+1 = ((m2 −m− 1)(m− 1)i−2 − 1)/(m− 2) for
2 ≤ i ≤ ⌈k/2⌉.

First consider the case that k is even, say k = 2ℓ for some
ℓ ≥ 2. From (42), ℓ ≥ 2, and m ≥ 3, we can see that

Uk ≥ [2(m2 −m− 1)(m− 1)ℓ − 4(m− 1)ℓ

−2ℓ(m− 1)]/(m− 2)2

= 2(m− 1)ℓ + [2(3m− 7)(m− 1)ℓ

−2ℓ(m− 1)]/(m− 2)2

≥ 2(m− 1)ℓ + [4ℓ(m− 1)− 2ℓ(m− 1)]/(m− 2)2

≥ 2(m− 1)ℓ, (73)
Uk ≤ [2(m2 −m− 1)(m− 1)ℓ − 16

−4(ℓ− 1) + 2ℓ]/(m− 2)2

≤ 2(m2 −m− 1)(m− 1)ℓ/(m− 2)2

≤ 10(m− 1)ℓ. (74)

For 2 ≤ i ≤ ⌈k/2⌉, we can see from m ≥ 3 that Bi ≤
(m2 − m)(m − 1)i−2/(m − 2) ≤ 3(m − 1)i−1 and Bi ≥
((m2 −m − 1)(m − 1)i−2 − (m − 1)i−2)/(m − 2) = (m +
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1)(m − 1)i−2 ≥ (m − 1)i−1. Note that (m − 1)i−1 ≤ Bi ≤
3(m− 1)i−1 also holds for i = 1 (as B1 = 1). Thus, we have
⌈log4 Bi⌉ < log4 Bi+1 ≤ (i−1) log4 (m− 1)+log4 3+1 ≤
(i − 1) log4 (m− 1) + 2 and ⌈log4 Bi⌉ ≥ log4 Bi ≥ (i −
1) log4 (m− 1) for 1 ≤ i ≤ ⌈k/2⌉. As such, it follows from
(52) (with mi = m and ni = n in (52) for 1 ≤ i ≤ k) and
m ≥ 3 that

M

m
≤ 2Σℓ

i=1[3((i− 1) log4 (m− 1) + 2) + 5]

= 3ℓ(ℓ− 1) log4 (m− 1) + 22ℓ

≤ 3(ℓ+ 7)2 log4 (m− 1), (75)
M

m
≥ 2Σℓ

i=1[3(i− 1) log4 (m− 1) + 5]

= 3ℓ(ℓ− 1) log4 (m− 1) + 10ℓ

≥ 3(ℓ− 1)2 log4 (m− 1). (76)

By combining Uk ≥ 2ℓ log2 (m−1)+1 in (73) and
ℓ ≥

√
2M/(3m log2 (m− 1)) − 7 in (75), we obtain

the lower bound for Uk in (55). Similarly, by com-
bining Uk ≤ 2ℓ log2 (m−1)+log2 10 in (74) and ℓ ≤√

2M/(3m log2 (m− 1)) + 1 in (76), we obtain the upper
bound for Uk in (55).

Now consider the case that k is odd, say k = 2ℓ − 1 for
some ℓ ≥ 2. From (43), ℓ ≥ 2, and m ≥ 3, we can see that

Uk ≥ [m(m2 −m− 1)(m− 1)ℓ−1 − 4(m− 1)ℓ

−(2ℓ− 3)(m− 2)]/(m− 2)2

= (m− 1)ℓ + [(4m2 − 13m+ 8)(m− 1)ℓ−1

−(2ℓ− 3)(m− 2)]/(m− 2)2

≥ (m− 1)ℓ + [5(ℓ− 1)(m− 1)

−(2ℓ− 3)(m− 2)]/(m− 2)2

≥ (m− 1)ℓ, (77)
Uk ≤ [m(m2 −m)(m− 1)ℓ−1 − 16− 2(2ℓ− 3)

+2ℓ− 1]/(m− 2)2

≤ m2(m− 1)ℓ/(m− 2)2 ≤ 9(m− 1)ℓ. (78)

As in the proof for the case that k is even, we have
M

m
≤ 2Σℓ−1

i=1 [3((i− 1) log4 (m− 1) + 2) + 5]

+3((ℓ− 1) log4 (m− 1) + 2) + 5

= 3(ℓ− 1)2 log4 (m− 1) + 22ℓ− 11

≤ 3(ℓ+ 7)2 log4 (m− 1), (79)
M

m
≥ 2Σℓ−1

i=1 [3(i− 1) log4 (m− 1) + 5]

+3(ℓ− 1) log4 (m− 1) + 5

= 3(ℓ− 1)2 log4 (m− 1) + 10ℓ− 5

≥ 3(ℓ− 1)2 log4 (m− 1). (80)

By combining Uk ≥ 2ℓ log2 (m−1) in (77) and
ℓ ≥

√
2M/(3m log2 (m− 1)) − 7 in (79), we obtain

the lower bound for Uk in (56). Similarly, by com-
bining Uk ≤ 2ℓ log2 (m−1)+log2 9 in (78) and ℓ ≤√

2M/(3m log2 (m− 1)) + 1 in (80), we obtain the upper
bound for Uk in (56).

(iv) As k ≥ s + 1 ≥ 3, it is clear that (58) follows from
(19) (with the inequality in (19) replaced by equality) and

⌊k/2⌋+2 ≤ ⌊(2s+2)/2⌋+2 = s+3. We also know from the
proof of Theorem 9(iv) that Bi = Bk−i+1 = (mi−1)/(m−1)
for 1 ≤ i ≤ min{⌈k/2⌉, s+ 1} = ⌈k/2⌉.

First consider the case that k is even, say k = 2ℓ for some
⌈(s+ 1)/2⌉ ≤ ℓ ≤ ⌊(2s+ 2)/2⌋ = s+ 1. Then we see from
s ≥ 2 that ℓ ≥ 2. From (44), ℓ ≥ 2, and m ≥ 2, we can see
that

2mℓ ≤ Uk ≤ 4mℓ. (81)

From (36) and n ≥ 4 (by (58)), we can see that ⌈logn Bi⌉ <
logn Bi+1 ≤ (i−1) logn m+logn 2+1 ≤ (i−1) logn m+2
and ⌈logn Bi⌉ ≥ logn Bi ≥ (i−1) logn m for 1 ≤ i ≤ ⌈k/2⌉.
It then follows from (52) (with mi = m and ni = n in (52)
for 1 ≤ i ≤ k) that

M

m
≤ 2Σℓ

i=1[(n− 1)((i− 1) logn m+ 2) + (n+ 1)]

= (n− 1)ℓ(ℓ− 1) logn m+ (3n− 1)(2ℓ)

≤ (n− 1)(ℓ+ 4/ logn m)2 logn m, (82)
M

m
≥ 2Σℓ

i=1[(n− 1)(i− 1) logn m+ (n+ 1)]

= (n− 1)ℓ(ℓ− 1) logn m+ (n+ 1)(2ℓ)

≥ (n− 1)(ℓ− 1)2 logn m. (83)

By combining Uk ≥ 2ℓ log2 m+1 in (81) and ℓ ≥√
M log2 n/((n− 1)m log2 m) − 4 log2 n/ log2 m in (82),

we obtain the lower bound for Uk in (59). Similarly,
by combining Uk ≤ 2ℓ log2 m+2 in (81) and ℓ ≤√
M log2 n/((n− 1)m log2 m) + 1 in (83), we obtain the

upper bound for Uk in (59).
Now consider the case that k is odd, say k = 2ℓ − 1 for

some ⌈(s+ 2)/2⌉ ≤ ℓ ≤ ⌊(2s+ 3)/2⌋ = s+ 1. Then we see
from s ≥ 2 that ℓ ≥ 2. From (45), ℓ ≥ 2, and m ≥ 2, we can
see that

mℓ ≤ Uk ≤ 3mℓ. (84)

As in the proof for the case that k is even, we have

M

m
≤ 2Σℓ−1

i=1 [(n− 1)((i− 1) logn m+ 2) + (n+ 1)]

+(n− 1)((ℓ− 1) logn m+ 2) + (n+ 1)

= (n− 1)(ℓ− 1)2 logn m+ (3n− 1)(2ℓ− 1)

≤ (n− 1)(ℓ+ 4/ logn m)2 logn m, (85)
M

m
≥ 2Σℓ−1

i=1 [(n− 1)(i− 1) logn m+ (n+ 1)]

+(n− 1)(ℓ− 1) logn m+ (n+ 1)

= (n− 1)(ℓ− 1)2 logn m+ (n+ 1)(2ℓ− 1)

≥ (n− 1)(ℓ− 1)2 logn m. (86)

By combining Uk ≥ 2ℓ log2 m in (84) and ℓ ≥√
M log2 n/((n− 1)m log2 m) − 4 log2 n/ log2 m in (85),

we obtain the lower bound for Uk in (60). Similarly,
by combining Uk ≤ 2ℓ log2 m+log2 3 in (84) and ℓ ≤√
M log2 n/((n− 1)m log2 m) + 1 in (86), we obtain the

upper bound for Uk in (60).
(v) The proof of (62) is given in Appendix C. As k ≥

2s + 3 > 4, it is clear from (19) (with the inequality in (19)
replaced by equality that n = min{⌊k/2⌋+2, s+3} = s+3.
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First consider the case that k is even, say k = 2ℓ for some
ℓ ≥ ⌈(2s+ 3)/2⌉ = s+ 2, and ℓ ≤ (ms+1 − 1)/(m− 1) + s.
Then we have from Bi ≥ 1, (36), and (62) that

max{mi−s−1, 1} ≤ Bi ≤ 2mi−1 for 1 ≤ i ≤ ℓ. (87)

From (46), (87), 2qℓ ≤ qℓ(s + 1) ≤ ℓ ≤ mℓ, and ms+1 ≥
23 = 8, we can see that

Uk = 2mΣqℓ
r=0Bℓ−r(s+1) + 2qℓ ≥ 2mBℓ ≥ 2mℓ−s, (88)

Uk = 2mΣqℓ
r=0Bℓ−r(s+1) + 2qℓ

≤ 2mΣqℓ
r=0(2m

ℓ−r(s+1)−1) +mℓ

≤ 4mℓ/(1− 1/ms+1) +mℓ

≤ (39/7)mℓ ≤ 6mℓ. (89)

From (87), we can see that ⌈logs+3 Bi⌉ < logs+3 Bi + 1 ≤
(i − 1) logs+3 m + logs+3 2 + 1 ≤ (i − 1) logs+3 m + 2 and
⌈logs+3 Bi⌉ ≥ logs+3 Bi ≥ max{(i− s−1) logs+3 m, 0}. As
such, it follows from (52) (with mi = m and ni = n in (52)
for 1 ≤ i ≤ k) that

M

m
≤ 2Σℓ

i=1[(s+ 2)((i− 1) logs+3 m+ 2) + s+ 4]

= (s+ 2)ℓ(ℓ− 1) logs+3 m+ (3s+ 8)(2ℓ)

≤ (s+ 2)(ℓ+ 4/ logs+3 m)2 logs+3 m, (90)
M

m
≥ 2Σs

i=1[(s+ 2) · 0 + s+ 4]

+2Σℓ
i=s+1[(s+ 2)(i− s− 1) logs+3 m+ s+ 4]

≥ (s+ 2)(ℓ− s− 1)2 logs+3 m. (91)

By combining Uk ≥ 2(ℓ−s) log2 m+1 in (88) and ℓ ≥√
M log2 (s+ 3)/((s+ 2)m log2 m)−4 log2 (s+ 3)/ log2 m

in (90), we obtain the lower bound for Uk in (63). Simi-
larly, by combining Uk ≤ 2ℓ log2 m+log2 6 in (89) and ℓ ≤√
M log2 (s+ 3)/((s+ 2)m log2 m)+s+1 in (91), we obtain

the upper bound for Uk in (63).
Now consider the case that k is odd, say k = 2ℓ−1 for some

ℓ ≥ ⌈(2s+ 4)/2⌉ = s+ 2, and ℓ ≤ (ms+1 − 1)/(m− 1) + s.
Then (87) still holds. From (47), (87), 2qℓ ≤ qℓ(s+ 1) ≤ ℓ ≤
mℓ, and ms+1 ≥ 23 = 8, we can see that

Uk = 2mΣqℓ
r=1Bℓ−r(s+1) + (m+ 1)Bℓ + 2qℓ − 1

≥ mBℓ ≥ mℓ−s, (92)
Uk = 2mΣqℓ

r=1Bℓ−r(s+1) + (m+ 1)Bℓ + 2qℓ − 1

= 2mΣqℓ
r=0Bℓ−r(s+1) − (m− 1)Bℓ + 2qℓ − 1

≤ 2mΣqℓ
r=0(2m

ℓ−r(s+1)−1) +mℓ

≤ 4mℓ/(1− 1/ms+1) +mℓ

≤ (39/7)mℓ ≤ 6mℓ. (93)

As in the proof for the case that k is even, we have

M

m
≤ 2Σℓ−1

i=1 [(s+ 2)((i− 1) logs+3 m+ 2) + s+ 4]

+(s+ 2)((ℓ− 1) logs+3 m+ 2) + s+ 4

= (s+ 2)(ℓ− 1)2 logs+3 m+ (3s+ 8)(2ℓ− 1)

≤ (s+ 2)(ℓ+ 4/ logs+3 m)2 logs+3 m, (94)
M

m
≥ 2Σs

i=1[(s+ 2) · 0 + s+ 4]

+2Σℓ−1
i=s+1[(s+ 2)(i− s− 1) logs+3 m+ s+ 4]

+(s+ 2)(ℓ− s− 1) logs+3 m+ s+ 4

≥ (s+ 2)(ℓ− s− 1)2 logs+3 m. (95)

By combining Uk ≥ 2(ℓ−s) log2 m in (92) and ℓ ≥√
M log2 (s+ 3)/((s+ 2)m log2 m)

− 4 log2 (s+ 3)/ log2 m in (94), we obtain the lower bound
for Uk in (64). Similarly, by combining Uk ≤ 2ℓ log2 m+log2 6

in (93) and ℓ ≤
√
M log2 (s+ 3)/((s+ 2)m log2 m) + s+ 1

in (95), we obtain the upper bound for Uk in (64).

Remark 13 (i) We see from Theorem 12(iii)-(v) that we can
achieve a buffer size Uk = 2O(

√
αM), where α is a constant

that depends on the parameters s, k, and m used in the
constructions:

• If s = 1, k ≥ 3, and m ≥ 3, then we have from
Theorem 12(iii) that α = 2 log2 (m− 1)/(3m), which
is the same as that in [37, Theorem 11(iii)].

• If s = 2, k = 3, and m ≥ 2, then we have from
Theorem 12(iv) that α = 2 log2 m/(3m), which is the
same as that in [37, Theorem 11(iv)].

• If s ≥ 2, max{s+ 1, 4} ≤ k ≤ 2s, and m ≥ 2, then we
have from Theorem 12(iv) that α = log2 n log2 m/((n−
1)m), where n = ⌊k/2⌋+ 2, which is better, i.e., larger,
than log2 (k + 1) log2 m/(km) in [37, Theorem 11(iv)]
(this is because log2 x/(x − 1) is decreasing in x over
x ≥ 3 and 3 < ⌊k/2⌋+ 2 < k + 1 for k ≥ 4).

• If s ≥ 2, 2s+1 ≤ k ≤ 2s+2, and m ≥ 2, then we have
from Theorem 12(iv) that α = log2 n log2 m/((n−1)m),
where n = ⌊k/2⌋ + 2, which is better, i.e., larger, than
log2 (2s+ 2) log2 m/((2s+1)m) in [37, Theorem 11(v)]
(this is because we have from s ≥ 2 and k ≥ 2s+1 that
3 < ⌊k/2⌋+ 2 < 2s+ 2 for 2s+ 1 ≤ k ≤ 2s+ 2).

• If s ≥ 2, k ≥ 2s + 3, and m ≥ 2, then we
have from Theorem 12(v) that α = log2 (s+ 3) ·
log2 m/((s + 2)m), which is better, i.e., larger, than
log2 (2s+ 2) log2 m/((2s+1)m) in [37, Theorem 11(v)]
(this is because we have from s ≥ 2 that 3 < s + 3 <
2s+ 2).

(ii) From (i), we see that our constructions achieve larger
buffer sizes than those in [37] in the regime that s ≥ 2, k ≥
max{s + 1, 4}, and m ≥ 2. This agrees with the analysis in
Section IV-B that our choice of n is better than that in [37]
in this regime. Indeed, our numerical results in Section VI-B
below also show that we achieve larger buffer sizes than those
in [37] with less construction cost in this regime.

B. Numerical Results

In the following, we present our numerical results. To eval-
uate the performance of a construction of an optical priority
queue by using a single optical (M+2)×(M+2) (bufferless)
crossbar switch and M optical fiber delay lines as in Figure 1,
we use the following two metrics as the performance measure:
(i) the buffer size achieved by the construction; (ii) the number
of optical 2 × 2 crossbar switches required to implement the
optical (M + 2) × (M + 2) crossbar switch in Figure 1 (as
this is directed related to its construction cost). We note that
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an (M + 2) × (M + 2) crossbar switch can be implemented
by using (M + 2) log2 (M + 2)− (M + 2)/2 2× 2 crossbar
switches via the Benes network [56].

Our numerical results show that: (i) the multiplexing gain
offered by using different numbers of FM1’s in different
groups in Figure 2 is better than that offered by using the
same number of FM1’s in each group, i.e., we achieve larger
buffer sizes with less construction costs by using different
numbers of FM1’s in different groups; (ii) our constructions
achieve larger buffer sizes with less construction costs than
those in [37]; (iii) our numerical results confirm the theoretical
results in Theorem 12(iii)-(v) that we can achieve a buffer
size 2O(

√
αM), where α is a constant that depends on the

parameters used in our constructions.
(i) The benefit of using different numbers of FM1’s in

different groups: We consider the scenario that the numbers
of FM1’s in different groups are symmetric as in Theorem 4,
i.e., mi = mk−i+1 ≥ 2 for 1 ≤ i ≤ ⌈k/2⌉. In the
optimal constructions given in Theorem 4, the parameters
n1, n2, . . . , nk are given by (26) and B1, B2, . . . , Bk are given
by (27) and (28).

First consider the case that each group has the same number
of FM1’s, say mi = m for 1 ≤ i ≤ k. We calculate the
maximum buffer size Uk achieved in our construction by using
(30) and calculate the number Nk of 2×2 switches required in
our construction by Nk = (M+2) log2 (M + 2)−(M+2)/2,
where M is calculated by using (52). Now consider the case
that different groups may have different numbers of FM1’s.
For each choice of m − 1 ≤ mi = mk−i+1 ≤ m + 1,
i = 1, 2, . . . , ⌈k/2⌉, we calculate the maximum buffer size
achieved in our construction by using (30) and calculate the
number of 2 × 2 switches required in our construction by
using (52). Then, among the choices of m1,m2, . . . ,mk with
corresponding buffer sizes at least as large as Uk, we choose
the one with the least number of 2 × 2 switches required in
the construction. We denote U∗

k as the buffer size achieved
by the chosen construction and denote N∗

k as the number of
2× 2 switches required in the chosen construction. Note that
we have limited the search for the chosen m1,m2, . . . ,mk

within the range m − 1 ≤ mi = mk−i+1 ≤ m + 1,
i = 1, 2, . . . , ⌈k/2⌉, so that we can compute U∗

k and N∗
k in a

reasonable amount of time (this serves our purpose quite well
since the result only gets better if we enlarge the range of the
search).

For 2 ≤ s ≤ 6, s + 1 ≤ k ≤ 25, and m = 3, we see
from Figure 11 and Figure 12 that we can achieve larger
buffer sizes, i.e., U∗

k/Uk ≥ 1, but with less construction costs,
i.e., N∗

k/Nk ≤ 1, by using different numbers of FM1’s in
different groups. For moderate values of k, say k ≥ 8, we
achieve a buffer size up to 20% larger but with 3% to 21%
less construction cost by using different numbers of FM1’s in
different groups. Similar results for the case that m = 4 can
also be observed from Figure 13 and Figure 14.

(ii) The improvement of our constructions over those in
[37]: We consider the scenario in [37] that each group has the
same number of FM1’s and each FM1 has the same number
of arrival links, say mi = m ≥ 2 and ni = n for 1 ≤ i ≤ k.
We calculate the maximum buffer size U ′

k achieved in the

construction in [37] by using [37, Eq. (13)] and calculate the
number N ′

k of 2× 2 switches required in the construction in
[37] by N ′

k = (M ′ + 2) log2 (M
′ + 2) − (M ′ + 2)/2, where

M ′ is calculated by using [37, Eq. (14)].
For 2 ≤ s ≤ 6, s + 1 ≤ k ≤ 25, and m = 3, we see from

Figure 15 and Figure 16 that our constructions achieve larger
buffer sizes than those in [37], i.e., U∗

k/U
′
k > 1, but with less

construction costs, i.e., N∗
k/N

′
k ≤ 1. For moderate values of

k, say k ≥ 8, we achieve a buffer size that is 1.27 to 1.54
times of those in [37], but with 18% to 62% less construction
cost. Furthermore, we observe that the improvement of our
constructions over those in [37] gets better as s gets larger, i.e.,
the ratio N∗

k/N
′
k get smaller as s gets larger. Similar results

for the case that m = 4 can also be observed from Figure 17
and Figure 18.

(iii) Validation of the theoretical results in Theorem 12(iii)-
(v): We consider the scenario that each group has the same
number of FM1’s and each FM1 has the same number of
arrival links, say mi = m ≥ 2 and ni = n for 1 ≤ i ≤ k. In
Theorem 12(iii)-(v), we have shown that the maximum buffer
size achieved in our optimal constructions is 2O(

√
αM), where

α is a constant that depends on the parameters s, k, and m
used in our constructions.

Let αk = (log2 Uk)
2/M , where M is given by (52), so that

we have Uk = 2
√
αkM . For 2 ≤ s ≤ 6, 10 ≤ k ≤ 250, and

m = 3, we see from Figure 19 that the ratio αk/α gets closer
to 1, i.e., αk gets closer to α, as k gets large. This serves as a
confirmation of our theoretical results in Theorem 12(iii)-(v).
Similar results for the case that m = 4 can also be observed
from Figure 20.

VII. FUTURE WORKS

In this section, we describe some directions worthy of
further investigations as follows:

(i) Maximum buffer usage of the FM1’s in the optimal
constructions: Consider the ith group of FM1’s in Figure 2,
where 1 ≤ i ≤ k. Since each of the mi FM1’s in the ith

group can store up to Bi packets at any slot, it is clear that
the ith group of FM1’s can store a maximum of miBi packets
at any slot. It is interesting and important to know whether
the buffer space miBi in the ith group can be fully utilized
or not. If not, then the buffer size Bi of the FM1’s in the ith

group can be made smaller in order to reduce the construction
complexities/costs.

According to the routing policy (R3), we know that only
packets with buffering tags belonging to the set Ψi can
be routed to the ith group of FM1’s. Since in the optimal
constructions in Theorem 4 we have |Ψi| = (mi − 1)Bi + 1,
which is smaller than miBi in the case that Bi ≥ 2, it seems
that the buffer space in the ith group of FM1’s is not fully
utilized. However, after thinking carefully, we realize that after
a packet admitted into the ith group of FM1’s its buffering tag
may change and may not belonging to Ψi as time progresses,
i.e., the packet may have a buffering tag smaller (resp., larger)
than Li (resp., Ui) due to the departures of packets from the
priority queue (resp., due to the arrivals of packets with higher
priorities than the packet). As a result, there may be more than
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Fig. 11. The ratio U∗
k/Uk between the maximum buffer sizes U∗

k and Uk achieved in our constructions for 2 ≤ s ≤ 6, s+ 1 ≤ k ≤ 25, and m = 3.
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Fig. 12. The ratio N∗
k/Nk between the numbers N∗

k and Nk of 2× 2 switches required in our constructions for 2 ≤ s ≤ 6, s+ 1 ≤ k ≤ 25, and m = 3.

|Ψi| packets buffered in the ith group and it is possible that
the buffer space in the ith group of FM1’s is fully utilized.

Our preliminary investigation through computer simulations
suggests that the buffer space of the FM1’s in each group is
fully utilized. As a future work, we will approach this problem
by devising a sample path, i.e., by explicitly specifying the
arrival process, the departure request process, and the priority
assignment for the arrival packets, and mathematically show
that the buffer space in each group of FM1’s is fully utilized
under the devised sample path.

(ii) A necessary and sufficient condition for the construc-
tions of optical priority queues: By operating the feedback
system in Figure 2 under the routing policy (R1)–(R3), we
have shown in Theorem 1 that the condition (A1)–(A3) is a
sufficient condition for such constructions of optical priority
queues. It is both interesting and desired to see whether we can
obtain a necessary condition, preferably by slightly modifying
the condition in (A1)–(A3), for such constructions of optical
priority queues. By doing so, we may obtain a necessary and
sufficient condition for the constructions of optical priority
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Fig. 13. The ratio U∗
k/Uk between the maximum buffer sizes U∗

k and Uk achieved in our constructions for 2 ≤ s ≤ 6, s+ 1 ≤ k ≤ 25, and m = 4.
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Fig. 14. The ratio N∗
k/Nk between the numbers N∗

k and Nk of 2× 2 switches required in our constructions for 2 ≤ s ≤ 6, s+ 1 ≤ k ≤ 25, and m = 4.

queues. This problem is difficult and challenging since we
not only have to come up with a candidate for the necessary
condition, but also have to devise different sample paths for
different scenarios to show that the proposed candidate is
indeed a necessary condition for the constructions of optical
priority queues.

(iii) Constructions of fault-tolerant optical priority queues:
In Section V-C, we have shown that our constructions possess
fault-tolerant capability. Specifically, in Theorem 10 we have
explicitly specified the degree of fault tolerance in terms of

the parameters used in our constructions. In reality, however,
the functioning of a network component is affected by many
factors such as crosstalk noise, process variation, and tem-
perature fluctuation. From the perspective of QoS, we may
sum up all the factors affecting the functioning of the FM1’s
in our constructions into a single number, called the required
degree of fault tolerance, and design the parameters used in our
construction in terms of the required degree of fault tolerance.
For future investigation along this line, the general results in
Theorem 1 will be instrumental for our exploration.
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2 ≤ s ≤ 6, s+ 1 ≤ k ≤ 25, and m = 3.
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k of 2× 2 switches required in our construction and in the construction in [37], respectively, for

2 ≤ s ≤ 6, s+ 1 ≤ k ≤ 25, and m = 3.
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2/M , in which M is given by (52), and α is given by Theorem 12(iii)-(v), for 2 ≤ s ≤ 6,
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10 ≤ k ≤ 250, and m = 4.
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VIII. CONCLUSION

In this paper, we have given constructions of optical priority
queues by using a feedback system consisting of an optical
(bufferless) crossbar switch and multiple groups of optical
FM1’s, and have shown that our constructions can be imple-
mented by using an optical (bufferless) crossbar switch and
multiple optical fiber delay lines. We have shown that our
constructions extend, improve, and generalize an important
class of constructions that contains the optimal constructions
in [37]. As a result of the generalization in this paper, we
have also shown that our constructions possess fault-tolerant
capability that can tolerate some malfunctioning FM1’s in our
constructions.

APPENDIX A
PROOF OF “(B) THERE IS NO COLLISION AT ANY INPUT

LINK OF ANY FM1 AT SLOT t” IN THE PROOF OF
THEOREM 1

In this appendix, we complete the proof of the two steps
mentioned at the end of the proof of Theorem 1: First, for
each 1 ≤ j ≤ k, we will identify the groups of FM1’s to
which packets that are from the output links of the jth group
of FM1’s and have to be buffered in the system at slot t can
possibly be routed. Second, for each 1 ≤ i ≤ k, we will use
the results obtained in the first step to show that packets routed
to the ith group of FM1’s at slot t can only come from either
the arrival link or the output links of the jth group of FM1’s
at slot t for some j1 ≤ j ≤ j2, where j1 and j2 are given by
(2) and (3).

We divide the proof into two parts: (i) k is even, and (ii) k
is odd.

(i) k is even, say k = 2ℓ. Note that ℓ = k/2 ≥ ⌈(s+1)/2⌉ ≥
1. Also note that in this case (7) in (A3) can be written as
follows:

|Ψj | ≥

{
Bj−1, if 2 ≤ j ≤ ℓ,

Bj+1, if ℓ+ 1 ≤ j ≤ k − 1.
(96)

We discuss the two cases 1 ≤ ℓ ≤ s + 1 and ℓ ≥ s + 2
separately.

Case 1: 1 ≤ ℓ ≤ s + 1. First, for each 1 ≤ j ≤ k, we
will identify the groups of FM1’s to which packets that are
from the output links of the jth group of FM1’s and have to be
buffered in the system at slot t can possibly be routed. For this
purpose, consider 1 ≤ j ≤ k and consider a packet p that is
buffered in the jth group of FM1’s at slot t− 1, leaves the jth

group of FM1’s at slot t, and has to be buffered in the system
at slot t. Then we have from Lemma 2(i) and Lemma 2(ii)
that

τ̃p(t) ≥ τ̃p(t− 1)− 1 ≥ Lj −Bj (97)

and

τ̃p(t) ≤ τ̃p(t− 1) + 1 ≤ Uj +Bj . (98)

We consider the following subcases.
Subcase 1(a): 1 ≤ j ≤ ℓ − 1. In this subcase, we have

τ̃p(t) ≥ 1 = L1, and we also have from (98) and (96) in (A3)
(note that 2 ≤ j+1 ≤ ℓ) that τ̃p(t) ≤ Uj+Bj ≤ Uj+|Ψj+1| =

Uj+1. Thus, we have τ̃p(t) ∈ {L1, L1 + 1, . . . , Uj+1} =
∪j+1
i=1Ψi. It then follows from the routing policy (R3) that

packet p can only be routed to the ith group of FM1’s at slot
t for some 1 ≤ i ≤ j + 1.

Subcase 1(b): j = ℓ. If 1 ≤ ℓ ≤ s, then clearly packet p
can only be routed to one of the k groups of FM1’s at slot t,
i.e., packet p can only be routed to the ith group of FM1’s at
slot t for some 1 ≤ i ≤ k. On the other hand, if ℓ = s + 1,
then we have τ̃p(t) ≥ 1 = L1, and we also have from (98)
and (5) in (A2) (note that j = ℓ = 2ℓ − ℓ = k − s − 1) that
τ̃p(t) ≤ Uj +Bj ≤ Uj+s = Uℓ+(ℓ−1) = Uk−1. Thus, we have
τ̃p(t) ∈ {L1, L1 + 1, . . . , Uk−1} = ∪k−1

i=1 Ψi. It then follows
from the routing policy (R3) that packet p can only be routed
to the ith group of FM1’s at slot t for some 1 ≤ i ≤ k − 1.

Subcase 1(c): j = ℓ + 1. If 1 ≤ ℓ ≤ s, then clearly packet
p can only be routed to one of the k groups of FM1’s at slot
t, i.e., packet p can only be routed to the ith group of FM1’s
at slot t for some 1 ≤ i ≤ k. On the other hand, if ℓ = s+1,
then we have τ̃p(t) ≤ Uk, and we also have from (97) and (4)
in (A2) (note that j = ℓ+1 = s+2) that τ̃p(t) ≥ Lj −Bj =
(Uj−1+1)−Bj ≥ Uj−s−1+1 = Lj−s = L(ℓ+1)−(ℓ−1) = L2.
Thus, we have τ̃p(t) ∈ {L2, L2+1, . . . , Uk} = ∪k

i=2Ψi. It then
follows from the routing policy (R3) that packet p can only be
routed to the ith group of FM1’s at slot t for some 2 ≤ i ≤ k.

Subcase 1(d): ℓ + 2 ≤ j ≤ k. In this subcase, we have
τ̃p(t) ≤ Uk, and we also have from (97) and (96) in (A3) (note
that ℓ+ 1 ≤ j − 1 ≤ k − 1) that τ̃p(t) ≥ Lj −Bj = (Uj−1 +
1) − Bj ≥ (Uj−1 + 1) − |Ψj−1| = Uj−2 + 1 = Lj−1. Thus,
we have τ̃p(t) ∈ {Lj−1, Lj−1 + 1, . . . , Uk} = ∪k

i=j−1Ψi. It
then follows from the routing policy (R3) that packet p can
only be routed to the ith group of FM1’s at slot t for some
j − 1 ≤ i ≤ k.

We summarize the results in Subcases 1(a)–(d) in Table I.

Second, for each 1 ≤ i ≤ k, we will use the results in
Subcases 1(a)–(d) above to identify the groups of FM1’s such
that packets that are from the output links of these groups
(but not other groups) of FM1’s and have to be buffered in
the system at slot t can possibly be routed to the ith group of
FM1’s at slot t, and show that packets routed to the ith group
of FM1’s at slot t can only come from either the arrival link
or the output links of the jth group of FM1’s at slot t for some
j1 ≤ j ≤ j2, where j1 and j2 are given by (2) (note that k is
even). For this purpose, consider 1 ≤ i ≤ k and consider the
following subcases.

Subcase 1(a′): i = 1. If 1 ≤ ℓ ≤ s, then we have from
(2) that j1 = max{i − 1, 1} = 1 (as i − 1 = 0 < 1) and
j2 = min{i + s, ℓ + 1} = ℓ + 1 (as i + s = s + 1 ≥ ℓ + 1).
On the other hand, if ℓ = s + 1, then we have from (2) that
j1 = max{i− 1, 1} = 1 and j2 = min{i+ s, ℓ+ 1} = s+ 1
(as i+ s = s+ 1 = ℓ < ℓ+ 1).

It is easy to see the following results:

• Suppose that 1 ≤ j ≤ ℓ − 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 1(a) holds (as i = 1), and hence
packets from the output links of the jth group of FM1’s
can possibly be routed to the ith group of FM1’s at slot
t.
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k = 2ℓ and 1 ≤ ℓ ≤ s+ 1
j 1 ≤ j ≤ ℓ− 1 j = ℓ j = ℓ+ 1 ℓ+ 2 ≤ j ≤ k

i 1 ≤ i ≤ j + 1

{
1 ≤ i ≤ k, if 1 ≤ ℓ ≤ s

1 ≤ i ≤ k − 1, if ℓ = s+ 1

{
1 ≤ i ≤ k, if 1 ≤ ℓ ≤ s

2 ≤ i ≤ k, if ℓ = s+ 1
j − 1 ≤ i ≤ k

TABLE I
FOR EACH 1 ≤ j ≤ k, THE RANGE OF i GIVEN IN SUBCASES 1(A)–(D) SUCH THAT PACKETS FROM THE OUTPUT LINKS OF THE jTH GROUP OF FM1’S

CAN POSSIBLY BE ROUTED TO THE iTH GROUP OF FM1’S AT SLOT t.

• Suppose that j = ℓ. If 1 ≤ ℓ ≤ s, then the condition
1 ≤ i ≤ k in Subcase 1(b) holds (as i = 1). Similarly, if
ℓ = s+1, then the condition 1 ≤ i ≤ k−1 in Subcase 1(b)
also holds (as i = 1). Thus, packets from the output links
of the jth group of FM1’s can possibly be routed to the
ith group of FM1’s at slot t.

• Suppose that j = ℓ+ 1. If 1 ≤ ℓ ≤ s, then the condition
1 ≤ i ≤ k in Subcase 1(c) holds (as i = 1), and hence
packets from the output links of the jth group of FM1’s
can possibly be routed to the ith group of FM1’s at slot
t. On the other hand, if ℓ = s + 1, then the condition
2 ≤ i ≤ k in Subcase 1(c) does not hold (as i = 1 < 2),
and hence packets from the output links of the jth group
of FM1’s cannot be routed to the ith group of FM1’s at
slot t.

• Suppose that ℓ+ 2 ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 1(d) does not hold (as i = 1 < ℓ+1 ≤
j − 1), and hence packets from the output links of the
jth group of FM1’s cannot be routed to the ith group of
FM1’s at slot t.

As such, we deduce the following results:
▲ If 1 ≤ ℓ ≤ s, then packets routed to the ith group of

FM1’s at slot t can only come from either the arrival
link or the output links of the jth group of FM1’s at slot
t for some 1 ≤ j ≤ ℓ+ 1, i.e., j1 ≤ j ≤ j2.

▲ On the other hand, if ℓ = s+1, then packets routed to the
ith group of FM1’s at slot t can only come from either the
arrival link or the output links of the jth group of FM1’s
at slot t for some 1 ≤ j ≤ ℓ = s+ 1, i.e., j1 ≤ j ≤ j2.

Subcase 1(b′): 2 ≤ i ≤ ℓ. Note that ℓ ≥ 2 in this subcase. In
this subcase, we have from (2) that j1 = max{i−1, 1} = i−1
(as i − 1 ≥ 1) and j2 = min{i + s, ℓ + 1} = ℓ + 1 (as
i+ s ≥ s+ 2 ≥ ℓ+ 1).

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ ℓ − 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 1(a) holds if and only if i − 1 =
max{i − 1, 1} ≤ j ≤ ℓ − 1. Thus, if i − 1 ≤ j ≤ ℓ − 1
(resp., 1 ≤ j ≤ i− 2), then packets from the output links
of the jth group of FM1’s can possibly (resp., cannot) be
routed to the ith group of FM1’s at slot t.

• Suppose that j = ℓ. If 1 ≤ ℓ ≤ s, then the condition
1 ≤ i ≤ k in Subcase 1(b) holds (as 1 < 2 ≤ i ≤
ℓ < 2ℓ = k). Similarly, if ℓ = s + 1, then the condition
1 ≤ i ≤ k − 1 in Subcase 1(b) also holds (as 1 < 2 ≤
i ≤ ℓ < 2ℓ− 1 = k − 1). Thus, packets from the output
links of the jth group of FM1’s can possibly be routed to
the ith group of FM1’s at slot t.

• Suppose that j = ℓ+ 1. If 1 ≤ ℓ ≤ s, then the condition
1 ≤ i ≤ k in Subcase 1(c) holds (as 1 < 2 ≤ i ≤ ℓ <

2ℓ = k). Similarly, if ℓ = s + 1, then the condition 2 ≤
i ≤ k in Subcase 1(c) also holds (as 2 ≤ i ≤ ℓ < 2ℓ = k).
Thus, packets from the output links of the jth group of
FM1’s can possibly be routed to the ith group of FM1’s
at slot t.

• Suppose that ℓ+ 2 ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 1(d) does not hold (as i ≤ ℓ ≤ j − 2 <
j − 1), and hence packets from the output links of the
jth group of FM1’s cannot be routed to the ith group of
FM1’s at slot t.

As such, we deduce that packets routed to the ith group of
FM1’s at slot t can only come from either the arrival link or
the output links of the jth group of FM1’s at slot t for some
i− 1 ≤ j ≤ ℓ+ 1, i.e., j1 ≤ j ≤ j2.

Subcase 1(c′): ℓ + 1 ≤ i ≤ k − 1. Note that ℓ ≥ 2 in
this subcase. In this subcase, we have from (2) that j2 =
min{i+1, k} = i+1 (as i+1 ≤ k) and j1 = max{i−s, ℓ} = ℓ
(as i− s ≤ k − 1− s ≤ k − ℓ = ℓ).

It is easy to see the following results:

• Suppose that 1 ≤ j ≤ ℓ − 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 1(a) does not hold (as i ≥ ℓ+ 1 ≥
j+2 > j+1), and hence packets from the output links of
the jth group of FM1’s cannot be routed to the ith group
of FM1’s at slot t.

• Suppose that j = ℓ. If 1 ≤ ℓ ≤ s, then the condition
1 ≤ i ≤ k in Subcase 1(b) holds (as 1 < ℓ + 1 ≤ i ≤
k − 1 < k). Similarly, if ℓ = s + 1, then the condition
1 ≤ i ≤ k−1 in Subcase 1(b) also holds (as 1 < ℓ+1 ≤
i ≤ k−1). Thus, packets from the output links of the jth

group of FM1’s can possibly be routed to the ith group
of FM1’s at slot t.

• Suppose that j = ℓ+ 1. If 1 ≤ ℓ ≤ s, then the condition
1 ≤ i ≤ k in Subcase 1(c) holds (as 1 < ℓ + 1 ≤ i ≤
k − 1 < k). Similarly, if ℓ = s + 1, then the condition
2 ≤ i ≤ k in Subcase 1(c) also holds (as 2 < ℓ + 1 ≤
i ≤ k − 1 < k). Thus, packets from the output links of
the jth group of FM1’s can possibly be routed to the ith

group of FM1’s at slot t.
• Suppose that ℓ+ 2 ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 1(d) holds if and only if i + 1 =
min{i + 1, k} ≥ j ≥ ℓ + 2. Thus, if i + 1 ≥ j ≥ ℓ + 2
(resp., k ≥ j ≥ i+2), then packets from the output links
of the jth group of FM1’s can possibly (resp., cannot) be
routed to the ith group of FM1’s at slot t.

As such, we deduce that packets routed to the ith group of
FM1’s at slot t can only come from either the arrival link or
the output links of the jth group of FM1’s at slot t for some
i+ 1 ≥ j ≥ ℓ, i.e., j2 ≥ j ≥ j1.
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Subcase 1(d′): i = k. If 1 ≤ ℓ ≤ s, then we have from (2)
that j2 = min{i + 1, k} = k (as i + 1 = k + 1 > k) and
j1 = max{i − s, ℓ} = ℓ (as i − s = k − s ≤ k − ℓ = ℓ).
On the other hand, if ℓ = s + 1, then we have from (2) that
j2 = min{i+ 1, k} = k and j1 = max{i− s, ℓ} = k − s (as
i− s = k − s = k − (ℓ− 1) = ℓ+ 1 > ℓ).

It is easy to see the following results:

• Suppose that 1 ≤ j ≤ ℓ− 1. Then the condition 1 ≤ i ≤
j+1 in Subcase 1(a) does not hold (as i = k > ℓ ≥ j+1),
and hence packets from the output links of the jth group
of FM1’s cannot be routed to the ith group of FM1’s at
slot t.

• Suppose that j = ℓ. If 1 ≤ ℓ ≤ s, then the condition
1 ≤ i ≤ k in Subcase 1(b) holds (as i = k), and hence
packets from the output links of the jth group of FM1’s
can possibly be routed to the ith group of FM1’s at slot
t. On the other hand, if ℓ = s + 1, then the condition
1 ≤ i ≤ k− 1 in Subcase 1(b) does not hold (as i = k >
k − 1), and hence packets from the output links of the
jth group of FM1’s cannot be routed to the ith group of
FM1’s at slot t.

• Suppose that j = ℓ+ 1. If 1 ≤ ℓ ≤ s, then the condition
1 ≤ i ≤ k in Subcase 1(c) holds (as i = k). Similarly, if
ℓ = s+ 1, then the condition 2 ≤ i ≤ k in Subcase 1(c)
also holds (as i = k). Thus, packets from the output links
of the jth group of FM1’s can possibly be routed to the
ith group of FM1’s at slot t.

• Suppose that ℓ + 2 ≤ j ≤ k. Then the condition j −
1 ≤ i ≤ k in Subcase 1(d) holds (as i = k), and hence
packets from the output links of the jth group of FM1’s
can possibly be routed to the ith group of FM1’s at slot
t.

As such, we deduce the following results:

▲ If 1 ≤ ℓ ≤ s, then packets routed to the ith group of
FM1’s at slot t can only come from either the arrival
link or the output links of the jth group of FM1’s at slot
t for some k ≥ j ≥ ℓ, i.e., j2 ≥ j ≥ j1.

▲ On the other hand, if ℓ = s+1, then packets routed to the
ith group of FM1’s at slot t can only come from either the
arrival link or the output links of the jth group of FM1’s
at slot t for some k ≥ j ≥ ℓ+1 = 2ℓ− (ℓ− 1) = k− s,
i.e., j2 ≥ j ≥ j1.

Case 2: ℓ ≥ s + 2. First, for each 1 ≤ j ≤ k, we will
identify the groups of FM1’s to which packets that are from
the output links of the jth group of FM1’s and have to be
buffered in the system at slot t can possibly be routed. For
this purpose, consider 1 ≤ j ≤ k and consider a packet p that
is buffered in the jth group of FM1’s at slot t− 1, leaves the
jth group of FM1’s at slot t, and has to be buffered in the
system at slot t. Note that (97) and (98) still hold in this case.

We consider the following subcases.
Subcase 2(a): 1 ≤ j ≤ s + 1. In this subcase, we

have τ̃p(t) ≥ 1 = L1, and we also have from (98) and
(96) in (A3) (note that 2 ≤ j + 1 ≤ s + 2 ≤ ℓ) that
τ̃p(t) ≤ Uj + Bj ≤ Uj + |Ψj+1| = Uj+1. Thus, we have
τ̃p(t) ∈ {L1, L1 + 1, . . . , Uj+1} = ∪j+1

i=1Ψi. It then follows

from the routing policy (R3) that packet p can only be routed
to the ith group of FM1’s at slot t for some 1 ≤ i ≤ j + 1.

Subcase 2(b): s+2 ≤ j ≤ ℓ−1. Note that ℓ ≥ s+3 in this
subcase. In this subcase, we have from (97) and (4) in (A2)
(note that s + 2 ≤ j ≤ ℓ − 1 < k) that τ̃p(t) ≥ Lj − Bj =
(Uj−1 + 1) − Bj ≥ Uj−s−1 + 1 = Lj−s, and we also have
from (98) and (96) in (A3) (note that 2 < s+ 3 ≤ j + 1 ≤ ℓ)
that τ̃p(t) ≤ Uj + Bj ≤ Uj + |Ψj+1| = Uj+1. Thus, we
have τ̃p(t) ∈ {Lj−s, Lj−s + 1, . . . , Uj+1} = ∪j+1

i=j−sΨi. It
then follows from the routing policy (R3) that packet p can
only be routed to the ith group of FM1’s at slot t for some
j − s ≤ i ≤ j + 1.

Subcase 2(c): j = ℓ. In this subcase, we have from (97)
and (4) in (A2) (note that s + 2 ≤ j = ℓ < k) that τ̃p(t) ≥
Lj − Bj = (Uj−1 + 1)− Bj ≥ Uj−s−1 + 1 = Lj−s, and we
also have from (98) and (5) in (A2) (note that 1 < s+2 ≤ j =
ℓ ≤ k−s−2 < k−s−1) that τ̃p(t) ≤ Uj+Bj ≤ Uj+s. Thus,
we have τ̃p(t) ∈ {Lj−s, Lj−s +1, . . . , Uj+s} = ∪j+s

i=j−sΨi. It
then follows from the routing policy (R3) that packet p can
only be routed to the ith group of FM1’s at slot t for some
j − s ≤ i ≤ j + s.

Subcase 2(d): j = ℓ+1. In this subcase, we have from (98)
and (5) in (A2) (note that 1 < s+3 ≤ j = ℓ+1 ≤ k− s− 1)
that τ̃p(t) ≤ Uj + Bj ≤ Uj+s, and we also have from (97)
and (4) in (A2) (note that s+2 < j = ℓ+1 < k) that τ̃p(t) ≥
Lj − Bj = (Uj−1 + 1) − Bj ≥ Uj−s−1 + 1 = Lj−s. Thus,
we have τ̃p(t) ∈ {Lj−s, Lj−s +1, . . . , Uj+s} = ∪j+s

i=j−sΨi. It
then follows from the routing policy (R3) that packet p can
only be routed to the ith group of FM1’s at slot t for some
j − s ≤ i ≤ j + s.

Subcase 2(e): ℓ + 2 ≤ j ≤ k − s − 1. Note that ℓ ≥ s + 3
in this subcase. In this subcase, we have from (98) and (5)
in (A2) (note that 1 < ℓ + 2 ≤ j ≤ k − s − 1) that τ̃p(t) ≤
Uj + Bj ≤ Uj+s, and we also have from (97) and (96) in
(A3) (note that ℓ + 1 ≤ j − 1 ≤ k − s − 2 < k − 1) that
τ̃p(t) ≥ Lj−Bj = (Uj−1+1)−Bj ≥ (Uj−1+1)−|Ψj−1| =
Uj−2 + 1 = Lj−1. Thus, we have τ̃p(t) ∈ {Lj−1, Lj−1 +
1, . . . , Uj+s} = ∪j+s

i=j−1Ψi. It then follows from the routing
policy (R3) that packet p can only be routed to the ith group
of FM1’s at slot t for some j − 1 ≤ i ≤ j + s.

Subcase 2(f): k − s ≤ j ≤ k. In this subcase, we have
τ̃p(t) ≤ Uk, and we also have from (97) and (96) in (A3) (note
that ℓ+1 ≤ k−s−1 ≤ j−1 ≤ k−1) that τ̃p(t) ≥ Lj−Bj =
(Uj−1 + 1) − Bj ≥ (Uj−1 + 1) − |Ψj−1| = Uj−2 + 1 =
Lj−1. Thus, we have τ̃p(t) ∈ {Lj−1, Lj−1 + 1, . . . , Uk} =
∪k
i=j−1Ψi. It then follows from the routing policy (R3) that

packet p can only be routed to the ith group of FM1’s at slot
t for some j − 1 ≤ i ≤ k.

We summarize the results in Subcases 2(a)–(f) in Table II.

Second, for each 1 ≤ i ≤ k, we will use the results in
Subcases 2(a)–(f) above to identify the groups of FM1’s such
that packets that are from the output links of these groups
(but not other groups) of FM1’s and have to be buffered in
the system at slot t can possibly be routed to the ith group of
FM1’s at slot t, and show that packets routed to the ith group
of FM1’s at slot t can only come from either the arrival link
or the output links of the jth group of FM1’s at slot t for some
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k = 2ℓ and ℓ ≥ s+ 2
j 1 ≤ j ≤ s+ 1 s+ 2 ≤ j ≤ ℓ− 1 j = ℓ j = ℓ+ 1 ℓ+ 2 ≤ j ≤ k − s− 1 k − s ≤ j ≤ k
i 1 ≤ i ≤ j + 1 j − s ≤ i ≤ j + 1 j − s ≤ i ≤ j + s j − s ≤ i ≤ j + s j − 1 ≤ i ≤ j + s j − 1 ≤ i ≤ k

TABLE II
FOR EACH 1 ≤ j ≤ k, THE RANGE OF i GIVEN IN SUBCASES 2(A)–(F) SUCH THAT PACKETS FROM THE OUTPUT LINKS OF THE jTH GROUP OF FM1’S CAN

POSSIBLY BE ROUTED TO THE iTH GROUP OF FM1’S AT SLOT t.

j1 ≤ j ≤ j2, where j1 and j2 are given by (2) (note that k is
even). For this purpose, consider 1 ≤ i ≤ k and consider the
following subcases.

Subcase 2(a′): i = 1. In this subcase, we have from (2)
that j1 = max{i − 1, 1} = 1 (as i − 1 = 0 < 1) and j2 =
min{i+s, ℓ+1} = s+1 (as i+s = s+1 < (s+2)+1 ≤ ℓ+1).

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ s + 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 2(a) holds (as i = 1) and hence
packets from the output links of the jth group of FM1’s
can possibly be routed to the ith group of FM1’s at slot
t.

• Suppose that s + 2 ≤ j ≤ ℓ − 1. Note that ℓ ≥ s + 3.
Then the condition j − s ≤ i ≤ j + 1 in Subcase 2(b)
does not hold (as i = 1 < 2 ≤ j − s), and hence packets
from the output links of the jth group of FM1’s cannot
be routed to the ith group of FM1’s at slot t.

• Suppose that j = ℓ. Then the condition j−s ≤ i ≤ j+s
in Subcase 2(c) does not hold (as i = 1 < 2 ≤ ℓ − s =
j − s), and hence packets from the output links of the
jth group of FM1’s cannot be routed to the ith group of
FM1’s at slot t.

• Suppose that j = ℓ+ 1. Then the condition j − s ≤ i ≤
j + s in Subcase 2(d) does not hold (as i = 1 < 3 ≤
(ℓ+ 1)− s = j − s), and hence packets from the output
links of the jth group of FM1’s cannot be routed to the
ith group of FM1’s at slot t.

• Suppose that ℓ+2 ≤ j ≤ k− s− 1. Note that ℓ ≥ s+3.
Then the condition j − 1 ≤ i ≤ j + s in Subcase 2(e)
does not hold (as i = 1 < ℓ + 1 ≤ j − 1), and hence
packets from the output links of the jth group of FM1’s
cannot be routed to the ith group of FM1’s at slot t.

• Suppose that k− s ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 2(f) does not hold (as i = 1 < s+3 ≤
2ℓ − s − 1 = k − s − 1 ≤ j − 1), and hence packets
from the output links of the jth group of FM1’s cannot
be routed to the ith group of FM1’s at slot t.

As such, we deduce that packets routed to the ith group of
FM1’s at slot t can only come from either the arrival link or
the output links of the jth group of FM1’s at slot t for some
1 ≤ j ≤ s+ 1, i.e., j1 ≤ j ≤ j2.

Subcase 2(b′): 2 ≤ i ≤ s+2. In this subcase, we have from
(2) that j1 = max{i − 1, 1} = i − 1. If s + 2 ≤ ℓ ≤ 2s + 1,
then we have from (2) that

j2 = min{i+ s, ℓ+ 1}

=

{
i+ s, if 2 ≤ i ≤ ℓ− s,

ℓ+ 1, if ℓ− s+ 1 ≤ i ≤ s+ 2.

On the other hand, if ℓ ≥ 2s+ 2, then we have from (2) that
j2 = min{i+ s, ℓ+ 1} = i+ s.

It is easy to see the following results:

• Suppose that 1 ≤ j ≤ s + 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 2(a) holds if and only if i − 1 =
max{i− 1, 1} ≤ j ≤ s+ 1.

• Suppose that s+ 2 ≤ j ≤ ℓ− 1. Note that ℓ ≥ s+ 3. If
s+3 ≤ ℓ ≤ 2s+2, then the condition j− s ≤ i ≤ j+1
in Subcase 2(b) holds if and only if

s+ 2 = max{i− 1, s+ 2}
≤ j ≤ min{i+ s, ℓ− 1}

=

{
i+ s, if 2 ≤ i ≤ ℓ− s− 1,

ℓ− 1, if ℓ− s ≤ i ≤ s+ 2.

On the other hand, if ℓ ≥ 2s + 3, then the condition
j − s ≤ i ≤ j + 1 in Subcase 2(b) holds if and only if
s+2 = max{i−1, s+2} ≤ j ≤ min{i+s, ℓ−1} = i+s.

• Suppose that j = ℓ. If s + 2 ≤ ℓ ≤ 2s + 2, then the
condition j − s ≤ i ≤ j + s in Subcase 2(c) holds if and
only if ℓ− s = max{ℓ− s, 2} ≤ i ≤ min{ℓ+ s, s+2} =
s+2. On the other hand, if ℓ ≥ 2s+3, then the condition
j − s ≤ i ≤ j + s in Subcase 2(c) does not hold (as
i ≤ s+ 2 ≤ ℓ− s− 1 = j − s− 1 < j − s).

• Suppose that j = ℓ+ 1. If s+ 2 ≤ ℓ ≤ 2s+ 1, then the
condition j − s ≤ i ≤ j + s in Subcase 2(d) holds if and
only if ℓ− s+1 = max{(ℓ+1)− s, 2} ≤ i ≤ min{(ℓ+
1)+ s, s+2} = s+2. On the other hand, if ℓ ≥ 2s+2,
then the condition j−s ≤ i ≤ j+s in Subcase 2(d) does
not hold (as i ≤ s+ 2 ≤ ℓ− s = j − s− 1 < j − s).

• Suppose that ℓ+2 ≤ j ≤ k− s− 1. Note that ℓ ≥ s+3.
Then the condition j − 1 ≤ i ≤ j + s in Subcase 2(e)
does not hold (as i ≤ s+ 2 ≤ ℓ− 1 ≤ j − 3 < j − 1).

• Suppose that k− s ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 2(f) does not hold (as i ≤ s + 2 ≤
2ℓ− s− 2 = k − s− 2 ≤ j − 2 < j − 1).

As such, we deduce the following results:

▲ If ℓ = s + 2, then packets routed to the ith group of
FM1’s at slot t can only come from either the arrival
link or the output links of the jth group of FM1’s at slot
t for some (note that the contribution from the result in
the first bullet point above is i− 1 ≤ j ≤ s+ 1 = ℓ− 1)

i− 1 ≤ j ≤

{
ℓ = s+ 2 = i+ s, if i = 2,

ℓ+ 1, if 3 ≤ i ≤ s+ 2,

i.e., j1 ≤ j ≤ j2.
▲ If s+3 ≤ ℓ ≤ 2s+1, then packets routed to the ith group

of FM1’s at slot t are either from the arrival link or from
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the output links of the jth group of FM1’s at slot t for
some

i− 1 ≤ j ≤


i+ s, if 2 ≤ i ≤ ℓ− s− 1,

ℓ = i+ s, if i = ℓ− s,

ℓ+ 1, if ℓ− s+ 1 ≤ i ≤ s+ 2,

i.e., j1 ≤ j ≤ j2.
▲ If ℓ = 2s + 2, then packets routed to the ith group of

FM1’s at slot t are either from the arrival link or from
the output links of the jth group of FM1’s at slot t for
some

i− 1 ≤ j ≤

{
i+ s, if 2 ≤ i ≤ s+ 1,

ℓ = i+ s, if i = s+ 2,

i.e., j1 ≤ j ≤ j2.
▲ Finally, if ℓ ≥ 2s+3, then packets routed to the ith group

of FM1’s at slot t are either from the arrival link or from
the output links of the jth group of FM1’s at slot t for
some i− 1 ≤ j ≤ i+ s, i.e., j1 ≤ j ≤ j2.

Subcase 2(c′): s + 3 ≤ i ≤ ℓ. Note that ℓ ≥ s + 3 in
this subcase. In this subcase, we have from (2) that j1 =
max{i− 1, 1} = i− 1. If s+ 3 ≤ ℓ ≤ 2s+ 2, then we have
from (2) that j2 = min{i + s, ℓ + 1} = ℓ + 1. On the other
hand, if ℓ ≥ 2s+ 3, then we have from (2) that

j2 = min{i+ s, ℓ+ 1}

=

{
i+ s, if s+ 3 ≤ i ≤ ℓ− s,

ℓ+ 1, if ℓ− s+ 1 ≤ i ≤ ℓ.

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ s + 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 2(a) does not hold (as i ≥ s+ 3 ≥
j + 2 > j + 1).

• Suppose that s+ 2 ≤ j ≤ ℓ− 1. If s+ 3 ≤ ℓ ≤ 2s+ 3,
then the condition j − s ≤ i ≤ j + 1 in Subcase 2(b)
holds if and only if i − 1 = max{i − 1, s + 2} ≤ j ≤
min{i+s, ℓ−1} = ℓ−1. On the other hand, if ℓ ≥ 2s+4,
then the condition j−s ≤ i ≤ j+1 in Subcase 2(b) holds
if and only if

i− 1 = max{i− 1, s+ 2}
≤ j ≤ min{i+ s, ℓ− 1}

=

{
i+ s, if s+ 3 ≤ i ≤ ℓ− s− 1,

ℓ− 1, if ℓ− s ≤ i ≤ ℓ.

• Suppose that j = ℓ. If s + 3 ≤ ℓ ≤ 2s + 3, then the
condition j − s ≤ i ≤ j + s in Subcase 2(c) holds (as
j − s = ℓ − s ≤ s + 3 ≤ i ≤ ℓ < ℓ + s = j + s).
On the other hand, if ℓ ≥ 2s + 4, then the condition
j − s ≤ i ≤ j + s in Subcase 2(c) holds if and only if
ℓ− s = max{ℓ− s, s+ 3} ≤ i ≤ min{ℓ+ s, ℓ} = ℓ.

• Suppose that j = ℓ+ 1. If s+ 3 ≤ ℓ ≤ 2s+ 2, then the
condition j − s ≤ i ≤ j + s in Subcase 2(d) holds (as
j−s = (ℓ+1)−s ≤ s+3 ≤ i ≤ ℓ < (ℓ+1)+s = j+s).
On the other hand, if ℓ ≥ 2s + 3, then the condition
j − s ≤ i ≤ j + s in Subcase 2(d) holds if and only if
ℓ − s + 1 = max{(ℓ + 1) − s, s + 3} ≤ i ≤ min{(ℓ +
1) + s, ℓ} = ℓ.

• Suppose that ℓ+ 2 ≤ j ≤ k − s− 1. Then the condition
j − 1 ≤ i ≤ j + s in Subcase 2(e) does not hold (as
i ≤ ℓ ≤ j − 2 < j − 1).

• Suppose that k− s ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 2(f) does not hold (as i ≤ ℓ ≤ 2ℓ− s−
3 = k − s− 3 ≤ j − 3 < j − 1).

As such, we deduce the following results:
▲ If s+3 ≤ ℓ ≤ 2s+2, then packets routed to the ith group

of FM1’s at slot t are either from the arrival link or from
the output links of the jth group of FM1’s at slot t for
some i− 1 ≤ j ≤ ℓ+ 1, i.e., j1 ≤ j ≤ j2.

▲ If ℓ = 2s + 3, then packets routed to the ith group of
FM1’s at slot t are either from the arrival link or from
the output links of the jth group of FM1’s at slot t for
some

i− 1 ≤ j ≤

{
ℓ = i+ s, if i = s+ 3,

ℓ+ 1, if s+ 4 ≤ i ≤ ℓ,

i.e., j1 ≤ j ≤ j2.
▲ Finally, if ℓ ≥ 2s+4, then packets routed to the ith group

of FM1’s at slot t are either from the arrival link or from
the output links of the jth group of FM1’s at slot t for
some

i− 1 ≤ j ≤


i+ s, if s+ 3 ≤ i ≤ ℓ− s− 1,

ℓ = i+ s, if i = ℓ− s,

ℓ+ 1, if ℓ− s+ 1 ≤ i ≤ ℓ,

i.e., j1 ≤ j ≤ j2.
Subcase 2(d′): ℓ+ 1 ≤ i ≤ k − s− 2. Note that ℓ ≥ s+ 3

in this subcase. In this subcase, we have from (2) that j2 =
min{i + 1, k} = i + 1. If s + 3 ≤ ℓ ≤ 2s + 2, then we have
from (2) that j1 = max{i − s, ℓ} = ℓ. On the other hand, if
ℓ ≥ 2s+ 3, then we have from (2) that

j1 = max{i− s, ℓ}

=

{
ℓ, if ℓ+ 1 ≤ i ≤ ℓ+ s,

i− s, if ℓ+ s+ 1 ≤ i ≤ k − s− 2.

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ s + 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 2(a) does not hold (as i ≥ ℓ+ 1 ≥
s+ 4 ≥ j + 3 > j + 1).

• Suppose that s + 2 ≤ j ≤ ℓ − 1. Then the condition
j − s ≤ i ≤ j + 1 in Subcase 2(b) does not hold (as
i ≥ ℓ+ 1 ≥ j + 2 > j + 1).

• Suppose that j = ℓ. If s + 3 ≤ ℓ ≤ 2s + 2, then the
condition j − s ≤ i ≤ j + s in Subcase 2(c) holds (as
j − s = ℓ− s < ℓ+ 1 ≤ i ≤ k− s− 2 ≤ ℓ+ s = j + s).
On the other hand, if ℓ ≥ 2s + 3, then the condition
j − s ≤ i ≤ j + s in Subcase 2(c) holds if and only if
ℓ+1 = max{ℓ−s, ℓ+1} ≤ i ≤ min{ℓ+s, k−s−2} =
ℓ+ s.

• Suppose that j = ℓ + 1. If s + 3 ≤ ℓ ≤ 2s + 3, then
the condition j − s ≤ i ≤ j + s in Subcase 2(d) holds
(as j − s = (ℓ + 1) − s < ℓ + 1 ≤ i ≤ k − s − 2 ≤
(ℓ + 1) + s = j + s). On the other hand, if ℓ ≥ 2s + 4,
then the condition j − s ≤ i ≤ j + s in Subcase 2(d)
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holds if and only if ℓ + 1 = max{(ℓ + 1) − s, ℓ + 1} ≤
i ≤ min{(ℓ+ 1) + s, k − s− 2} = ℓ+ s+ 1.

• Suppose that ℓ+2 ≤ j ≤ k−s−1. If s+3 ≤ ℓ ≤ 2s+3,
then the condition j − 1 ≤ i ≤ j + s in Subcase 2(e)
holds if and only if i + 1 = min{i + 1, k − s − 1} ≥
j ≥ max{i − s, ℓ + 2} = ℓ + 2. On the other hand, if
ℓ ≥ 2s + 4, then the condition j − 1 ≤ i ≤ j + s in
Subcase 2(e) holds if and only if

i+ 1 = min{i+ 1, k − s− 1}
≥ j ≥ max{i− s, ℓ+ 2}

=

{
ℓ+ 2, if ℓ+ 1 ≤ i ≤ ℓ+ s+ 1,

i− s, if ℓ+ s+ 2 ≤ i ≤ k − s− 2.

• Suppose that k− s ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 2(f) does not hold (as i ≤ k − s− 2 ≤
j − 2 < j − 1).

As such, we deduce the following results:
▲ If s+3 ≤ ℓ ≤ 2s+2, then packets routed to the ith group

of FM1’s at slot t are either from the arrival link or from
the output links of the jth group of FM1’s at slot t for
some i+ 1 ≥ j ≥ ℓ, i.e., j2 ≥ j ≥ j1.

▲ If ℓ = 2s + 3, then packets routed to the ith group of
FM1’s at slot t are either from the arrival link or from
the output links of the jth group of FM1’s at slot t for
some

i+ 1 ≥ j ≥

{
ℓ, if 2s+ 4 ≤ i ≤ 3s+ 3,

ℓ+ 1 = i− s, if i = 3s+ 4,

i.e., j2 ≥ j ≥ j1.
▲ Finally, if ℓ ≥ 2s+4, then packets routed to the ith group

of FM1’s at slot t are either from the arrival link or from
the output links of the jth group of FM1’s at slot t for
some

i+ 1 ≥ j ≥


ℓ, if ℓ+ 1 ≤ i ≤ ℓ+ s,

ℓ+ 1 = i− s, if i = ℓ+ s+ 1,

i− s, if ℓ+ s+ 2 ≤ i ≤ k − s− 2,

i.e., j2 ≥ j ≥ j1.
Subcase 2(e′): k−s−1 ≤ i ≤ k−1. In this subcase, we have

from (2) that j2 = min{i+1, k} = i+1. If s+2 ≤ ℓ ≤ 2s+1,
then we have from (2) that

j1 = max{i− s, ℓ}

=

{
ℓ, if k − s− 1 ≤ i ≤ ℓ+ s,

i− s, if ℓ+ s+ 1 ≤ i ≤ k − 1.

On the other hand, if ℓ ≥ 2s+ 2, then we have from (2) that
j1 = max{i− s, ℓ} = i− s.

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ s+ 1. Then the condition 1 ≤ i ≤
j + 1 in Subcase 2(a) does not hold (as i ≥ k− s− 1 ≥
s+ 3 ≥ j + 2 > j + 1).

• Suppose that s + 2 ≤ j ≤ ℓ − 1. Note that ℓ ≥ s + 3.
Then the condition j − s ≤ i ≤ j + 1 in Subcase 2(b)
does not hold (as i ≥ k−s−1 ≥ ℓ+2 ≥ j+3 > j+1).

• Suppose that j = ℓ. If s + 2 ≤ ℓ ≤ 2s + 1, then the
condition j − s ≤ i ≤ j + s in Subcase 2(c) holds if
and only if k − s − 1 = max{ℓ − s, k − s − 1} ≤ i ≤
min{ℓ+s, k−1} = ℓ+s. On the other hand, if ℓ ≥ 2s+2,
then the condition j−s ≤ i ≤ j+s in Subcase 2(c) does
not hold (as i ≥ k−s−1 ≥ ℓ+s+1 = j+s+1 > j+s).

• Suppose that j = ℓ+ 1. If s+ 2 ≤ ℓ ≤ 2s+ 2, then the
condition j − s ≤ i ≤ j + s in Subcase 2(d) holds if and
only if k − s− 1 = max{(ℓ+ 1)− s, k − s− 1} ≤ i ≤
min{(ℓ+ 1) + s, k− 1} = ℓ+ s+ 1. On the other hand,
if ℓ ≥ 2s + 3, then the condition j − s ≤ i ≤ j + s in
Subcase 2(d) does not hold (as i ≥ k−s−1 ≥ ℓ+s+2 =
j + s+ 1 > j + s).

• Suppose that ℓ+2 ≤ j ≤ k−s−1. Note that ℓ ≥ s+3. If
s+3 ≤ ℓ ≤ 2s+2, then the condition j− 1 ≤ i ≤ j+ s
in Subcase 2(e) holds if and only if

k − s− 1 = min{i+ 1, k − s− 1}
≥ j ≥ max{i− s, ℓ+ 2}

=

{
ℓ+ 2, if k − s− 1 ≤ i ≤ ℓ+ s+ 1,

i− s, if ℓ+ s+ 2 ≤ i ≤ k − 1.

On the other hand, if ℓ ≥ 2s + 3, then the condition
j − 1 ≤ i ≤ j + s in Subcase 2(e) holds if and only if
k−s−1 = min{i+1, k−s−1} ≥ j ≥ max{i−s, ℓ+2} =
i− s.

• Suppose that k − s ≤ j ≤ k. Then the condition j −
1 ≤ i ≤ k in Subcase 2(f) holds if and only if i + 1 =
min{i+ 1, k} ≥ j ≥ k − s.

As such, we deduce the following results:
▲ If ℓ = s+2, then packets routed to the ith group of FM1’s

at slot t can only come from either the arrival link or the
output links of the jth group of FM1’s at slot t for some
(note that the contribution from the result in the last bullet
point above is i+ 1 ≥ j ≥ k − s = s+ 4 = ℓ+ 2)

i+ 1

≥ j ≥

{
ℓ, if k − s− 1 ≤ i ≤ ℓ+ s = 2s+ 2 = k − 2,

ℓ+ 1 = s+ 3 = i− s, if i = 2s+ 3 = k − 1,

i.e., j2 ≥ j ≥ j1.
▲ If s+3 ≤ ℓ ≤ 2s+1, then packets routed to the ith group

of FM1’s at slot t are either from the arrival link or from
the output links of the jth group of FM1’s at slot t for
some

i+ 1 ≥ j ≥


ℓ, if k − s− 1 ≤ i ≤ ℓ+ s,

ℓ+ 1 = i− s, if i = ℓ+ s+ 1,

i− s, if ℓ+ s+ 2 ≤ i ≤ k − 1,

i.e., j2 ≥ j ≥ j1.
▲ If ℓ = 2s + 2, then packets routed to the ith group of

FM1’s at slot t are either from the arrival link or from
the output links of the jth group of FM1’s at slot t for
some

i+ 1 ≥ j ≥

{
ℓ+ 1 = i− s, if i = 3s+ 3,

i− s, if 3s+ 4 ≤ i ≤ k − 1,

i.e., j2 ≥ j ≥ j1.
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▲ Finally, if ℓ ≥ 2s+3, then packets routed to the ith group
of FM1’s at slot t are either from the arrival link or from
the output links of the jth group of FM1’s at slot t for
some i+ 1 ≥ j ≥ i− s, i.e., j2 ≥ j ≥ j1.

Subcase 2(f ′): i = k. In this subcase, we have from (2) that
j2 = min{i+ 1, k} = k and j1 = max{i− s, ℓ} = k − s.

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ s+ 1. Then the condition 1 ≤ i ≤
j + 1 in Subcase 2(a) does not hold (as i = k > ℓ ≥
s+ 2 ≥ j + 1).

• Suppose that s + 2 ≤ j ≤ ℓ − 1. Note that ℓ ≥ s + 3.
Then the condition j − s ≤ i ≤ j + 1 in Subcase 2(b)
does not hold (as i = k > ℓ ≥ j + 1).

• Suppose that j = ℓ. Then the condition j−s ≤ i ≤ j+s
in Subcase 2(c) does not hold (as i = k > ℓ+s = j+s).

• Suppose that j = ℓ + 1. Then the condition j − s ≤
i ≤ j + s in Subcase 2(d) does not hold (as i = k >
ℓ+ s+ 1 = j + s).

• Suppose that ℓ+2 ≤ j ≤ k− s− 1. Note that ℓ ≥ s+3.
Then the condition j − 1 ≤ i ≤ j + s in Subcase 2(e)
does not hold (as i = k > k − 1 ≥ j + s).

• Suppose that k− s ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 2(f) holds (as i = k).

As such, we deduce that packets routed to the ith group of
FM1’s at slot t can only come from either the arrival link or
the output links of the jth group of FM1’s at slot t for some
k ≥ j ≥ k − s, i.e., j2 ≥ j ≥ j1.

(ii) k is odd, say k = 2ℓ − 1. Note that ℓ = (k + 1)/2 ≥
⌈((s+1)+ 1)/2⌉ ≥ 2. Also note that in this case (7) in (A3)
can be written as follows:

|Ψj | ≥

{
Bj−1, if 2 ≤ j ≤ ℓ,

Bj+1, if ℓ ≤ j ≤ k − 1.
(99)

We discuss the two cases 2 ≤ ℓ ≤ s + 2 and ℓ ≥ s + 3
separately.

Case 1: 2 ≤ ℓ ≤ s + 2. First, for each 1 ≤ j ≤ k, we
will identify the groups of FM1’s to which packets that are
from the output links of the jth group of FM1’s and have to
be buffered in the system at slot t can possibly be routed. For
this purpose, consider 1 ≤ j ≤ k and consider a packet p that
is buffered in the jth group of FM1’s at slot t− 1, leaves the
jth group of FM1’s at slot t, and has to be buffered in the
system at slot t. Note that (97) and (98) still hold in this case.

We consider the following subcases.
Subcase 1(a): 1 ≤ j ≤ ℓ − 1. In this subcase, we have

τ̃p(t) ≥ 1 = L1, and we also have from (98) and (99) in (A3)
(note that 2 ≤ j+1 ≤ ℓ) that τ̃p(t) ≤ Uj+Bj ≤ Uj+|Ψj+1| =
Uj+1. Thus, we have τ̃p(t) ∈ {L1, L1 + 1, . . . , Uj+1} =
∪j+1
i=1Ψi. It then follows from the routing policy (R3) that

packet p can only be routed to the ith group of FM1’s at slot
t for some 1 ≤ i ≤ j + 1.

Subcase 1(b): j = ℓ. If 2 ≤ ℓ ≤ s+1, then clearly packet p
can only be routed to one of the k groups of FM1’s at slot t,
i.e., packet p can only be routed to the ith group of FM1’s at
slot t for some 1 ≤ i ≤ k. On the other hand, if ℓ = s+2, then
we have from (97) and (4) in (A2) (note that j = ℓ = s+ 2)
that τ̃p(t) ≥ Lj − Bj = (Uj−1 + 1) − Bj ≥ Uj−s−1 + 1 =

Lj−s = Lℓ−(ℓ−2) = L2, and we also have from (98) and (5)
in (A2) (note that j = ℓ = (2ℓ−1)− (ℓ−1) = k− s−1) that
τ̃p(t) ≤ Uj +Bj ≤ Uj+s = Uℓ+(ℓ−2) = Uk−1. Thus, we have
τ̃p(t) ∈ {L2, L2 + 1, . . . , Uk−1} = ∪k−1

i=2 Ψi. It then follows
from the routing policy (R3) that packet p can only be routed
to the ith group of FM1’s at slot t for some 2 ≤ i ≤ k − 1.

Subcase 1(c): ℓ + 1 ≤ j ≤ k. In this subcase, we have
τ̃p(t) ≤ Uk, and we also have from (97) and (99) in (A3)
(note that ℓ ≤ j−1 ≤ k−1) that τ̃p(t) ≥ Lj −Bj = (Uj−1+
1) − Bj ≥ (Uj−1 + 1) − |Ψj−1| = Uj−2 + 1 = Lj−1. Thus,
we have τ̃p(t) ∈ {Lj−1, Lj−1 + 1, . . . , Uk} = ∪k

i=j−1Ψi. It
then follows from the routing policy (R3) that packet p can
only be routed to the ith group of FM1’s at slot t for some
j − 1 ≤ i ≤ k.

We summarize the results in Subcases 1(a)–(c) in the
following table.

Second, for each 1 ≤ i ≤ k, we will use the results in
Subcases 1(a)–(c) above to identify the groups of FM1’s such
that packets that are from the output links of these groups
(but not other groups) of FM1’s and have to be buffered in
the system at slot t can possibly be routed to the ith group of
FM1’s at slot t, and show that packets routed to the ith group
of FM1’s at slot t can only come from either the arrival link
or the output links of the jth group of FM1’s at slot t for some
j1 ≤ j ≤ j2, where j1 and j2 are given by (3) (note that k is
odd). For this purpose, consider 1 ≤ i ≤ k and consider the
following subcases.

Subcase 1(a′): i = 1. If 2 ≤ ℓ ≤ s + 1, then we have
from (3) that j1 = max{i − 1, 1} = 1 (as i − 1 = 0 < 1)
and j2 = min{i + s, ℓ} = ℓ (as i + s = s + 1 ≥ ℓ). On
the other hand, if ℓ = s + 2, then we have from (3) that
j1 = max{i − 1, 1} = 1 and j2 = min{i + s, ℓ} = s + 1 (as
i+ s = s+ 1 < ℓ).

It is easy to see the following results:

• Suppose that 1 ≤ j ≤ ℓ − 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 1(a) holds (as i = 1), and hence
packets from the output links of the jth group of FM1’s
can possibly be routed to the ith group of FM1’s at slot
t.

• Suppose that j = ℓ. If 2 ≤ ℓ ≤ s+ 1, then the condition
1 ≤ i ≤ k in Subcase 1(b) holds (as i = 1), and hence
packets from the output links of the jth group of FM1’s
can possibly be routed to the ith group of FM1’s at slot
t. On the other hand, if ℓ = s+2, then the condition 2 ≤
i ≤ k − 1 in Subcase 1(b) does not hold (as i = 1 < 2),
and hence packets from the output links of the jth group
of FM1’s cannot be routed to the ith group of FM1’s at
slot t.

• Suppose that ℓ+ 1 ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 1(c) does not hold (as i = 1 < ℓ ≤
j − 1), and hence packets from the output links of the
jth group of FM1’s cannot be routed to the ith group of
FM1’s at slot t.

As such, we deduce the following results:

▲ If 2 ≤ ℓ ≤ s + 1, then packets routed to the ith group
of FM1’s at slot t can only come from either the arrival
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k = 2ℓ− 1 and 2 ≤ ℓ ≤ s+ 2
j 1 ≤ j ≤ ℓ− 1 j = ℓ ℓ+ 1 ≤ j ≤ k

i 1 ≤ i ≤ j + 1

{
1 ≤ i ≤ k, if 2 ≤ ℓ ≤ s+ 1

2 ≤ i ≤ k − 1, if ℓ = s+ 2
j − 1 ≤ i ≤ k

TABLE III
FOR EACH 1 ≤ j ≤ k, THE RANGE OF i GIVEN IN SUBCASES 1(A)–(C) SUCH THAT PACKETS FROM THE OUTPUT LINKS OF THE jTH GROUP OF FM1’S

CAN POSSIBLY BE ROUTED TO THE iTH GROUP OF FM1’S AT SLOT t.

link or the output links of the jth group of FM1’s at slot
t for some 1 ≤ j ≤ ℓ, i.e., j1 ≤ j ≤ j2.

▲ On the other hand, if ℓ = s+2, then packets routed to the
ith group of FM1’s at slot t can only come from either
the arrival link or the output links of the jth group of
FM1’s at slot t for some 1 ≤ j ≤ ℓ − 1 = s + 1, i.e.,
j1 ≤ j ≤ j2.

Subcase 1(b′): 2 ≤ i ≤ ℓ − 1. Note that ℓ ≥ 3 in this
subcase. In this subcase, we have from (3) that j1 = max{i−
1, 1} = i − 1 (as i − 1 ≥ 1) and j2 = min{i + s, ℓ} = ℓ (as
i+ s ≥ s+ 2 ≥ ℓ).

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ ℓ − 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 1(a) holds if and only if i − 1 =
max{i − 1, 1} ≤ j ≤ ℓ − 1. Thus, if i − 1 ≤ j ≤ ℓ − 1
(resp., 1 ≤ j ≤ i− 2), then packets from the output links
of the jth group of FM1’s can possibly (resp., cannot) be
routed to the ith group of FM1’s at slot t.

• Suppose that j = ℓ. If 2 ≤ ℓ ≤ s+ 1, then the condition
1 ≤ i ≤ k in Subcase 1(b) holds (as 1 < 2 ≤ i ≤
ℓ − 1 < 2ℓ − 1 = k). Similarly, if ℓ = s + 2, then the
condition 2 ≤ i ≤ k − 1 in Subcase 1(b) also holds (as
2 ≤ i ≤ ℓ − 1 < 2ℓ − 2 = k − 1). Thus, packets from
the output links of the jth group of FM1’s can possibly
be routed to the ith group of FM1’s at slot t.

• Suppose that ℓ+ 1 ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 1(c) does not hold (as i ≤ ℓ − 1 ≤
j − 2 < j − 1), and hence packets from the output links
of the jth group of FM1’s cannot be routed to the ith

group of FM1’s at slot t.
As such, we deduce that packets routed to the ith group of

FM1’s at slot t can only come from either the arrival link or
the output links of the jth group of FM1’s at slot t for some
i− 1 ≤ j ≤ ℓ, i.e., j1 ≤ j ≤ j2.

Subcase 1(c′): i = ℓ. In this subcase, we have from (3) that
j1 = i− 1 = ℓ− 1 and j2 = i+ 1 = ℓ+ 1.

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ ℓ − 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 1(a) holds if and only if ℓ − 1 =
max{ℓ−1, 1} = max{i−1, 1} ≤ j ≤ ℓ−1, i.e., j = ℓ−1.
Thus, if j = ℓ−1 (resp., 1 ≤ j ≤ ℓ−2), then packets from
the output links of the jth group of FM1’s can possibly
(resp., cannot) be routed to the ith group of FM1’s at slot
t.

• Suppose that j = ℓ. If 2 ≤ ℓ ≤ s+ 1, then the condition
1 ≤ i ≤ k in Subcase 1(b) holds (as 1 < i = ℓ <
2ℓ − 1 = k). Similarly, if ℓ = s + 2, then the condition
2 ≤ i ≤ k − 1 in Subcase 1(b) also holds (as 2 ≤ i =
ℓ ≤ 2ℓ− 2 = k− 1). Thus, packets from the output links

of the jth group of FM1’s can possibly be routed to the
ith group of FM1’s at slot t.

• Suppose that ℓ+ 1 ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 1(c) holds if and only if ℓ + 1 =
min{ℓ+1, k} = min{i+1, k} ≥ j ≥ ℓ+1, i.e., j = ℓ+1.
Thus, if j = ℓ+1 (resp., k ≥ j ≥ ℓ+2), then packets from
the output links of the jth group of FM1’s can possibly
(resp., cannot) be routed to the ith group of FM1’s at slot
t.

As such, we deduce that packets routed to the ith group of
FM1’s at slot t can only come from either the arrival link or
the output links of the jth group of FM1’s at slot t for some
ℓ− 1 ≤ j ≤ ℓ+ 1, i.e., j1 ≤ j ≤ j2.

Subcase 1(d′): ℓ + 1 ≤ i ≤ k − 1. Note that ℓ ≥ 3 in
this subcase. In this subcase, we have from (3) that j2 =
min{i+1, k} = i+1 (as i+1 ≤ k) and j1 = max{i−s, ℓ} = ℓ
(as i− s ≤ k − 1− s ≤ k − 1− (ℓ− 2) = ℓ).

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ ℓ − 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 1(a) does not hold (as i ≥ ℓ+ 1 ≥
j+2 > j+1), and hence packets from the output links of
the jth group of FM1’s cannot be routed to the ith group
of FM1’s at slot t.

• Suppose that j = ℓ. If 2 ≤ ℓ ≤ s+ 1, then the condition
1 ≤ i ≤ k in Subcase 1(b) holds (as 1 < ℓ + 1 ≤ i ≤
k − 1 < k). Similarly, if ℓ = s + 2, then the condition
2 ≤ i ≤ k−1 in Subcase 1(b) also holds (as 2 < ℓ+1 ≤
i ≤ k−1). Thus, packets from the output links of the jth

group of FM1’s can possibly be routed to the ith group
of FM1’s at slot t.

• Suppose that ℓ + 1 ≤ j ≤ k. Then the condition j −
1 ≤ i ≤ k in Subcase 1(c) holds if and only if i + 1 =
min{i + 1, k} ≥ j ≥ ℓ + 1. Thus, if i + 1 ≥ j ≥ ℓ + 1
(resp., k ≥ j ≥ i+2), then packets from the output links
of the jth group of FM1’s can possibly (resp., cannot) be
routed to the ith group of FM1’s at slot t.

As such, we deduce that packets routed to the ith group of
FM1’s at slot t can only come from either the arrival link or
the output links of the jth group of FM1’s at slot t for some
i+ 1 ≥ j ≥ ℓ, i.e., j2 ≥ j ≥ j1.

Subcase 1(e′): i = k. If 2 ≤ ℓ ≤ s+ 1, then we have from
(3) that j2 = min{i + 1, k} = k (as i + 1 = k + 1 > k) and
j1 = max{i− s, ℓ} = ℓ (as i− s = k− s ≤ k− (ℓ− 1) = ℓ).
On the other hand, if ℓ = s + 2, then we have from (3) that
j2 = min{i+ 1, k} = k and j1 = max{i− s, ℓ} = ℓ+ 1 (as
i− s = k − s = k − (ℓ− 2) = ℓ+ 1 > ℓ).

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ ℓ− 1. Then the condition 1 ≤ i ≤
j+1 in Subcase 1(a) does not hold (as i = k > ℓ ≥ j+1),
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and hence packets from the output links of the jth group
of FM1’s cannot be routed to the ith group of FM1’s at
slot t.

• Suppose that j = ℓ. If 2 ≤ ℓ ≤ s+ 1, then the condition
1 ≤ i ≤ k in Subcase 1(b) holds (as i = k), and hence
packets from the output links of the jth group of FM1’s
can possibly be routed to the ith group of FM1’s at slot
t. On the other hand, if ℓ = s + 2, then the condition
1 ≤ i ≤ k− 1 in Subcase 1(b) does not hold (as i = k >
k − 1), and hence packets from the output links of the
jth group of FM1’s cannot be routed to the ith group of
FM1’s at slot t.

• Suppose that ℓ + 1 ≤ j ≤ k. Then the condition j −
1 ≤ i ≤ k in Subcase 1(c) holds (as i = k), and hence
packets from the output links of the jth group of FM1’s
can possibly be routed to the ith group of FM1’s at slot
t.

As such, we deduce the following results:
▲ If 2 ≤ ℓ ≤ s + 1, then packets routed to the ith group

of FM1’s at slot t can only come from either the arrival
link or the output links of the jth group of FM1’s at slot
t for some k ≥ j ≥ ℓ, i.e., j2 ≥ j ≥ j1.

▲ On the other hand, if ℓ = s+2, then packets routed to the
ith group of FM1’s at slot t can only come from either the
arrival link or the output links of the jth group of FM1’s
at slot t for some k ≥ j ≥ ℓ+ 1, i.e., j2 ≥ j ≥ j1.

Case 2: ℓ ≥ s + 3. First, for each 1 ≤ j ≤ k, we will
identify the groups of FM1’s to which packets that are from
the output links of the jth group of FM1’s and have to be
buffered in the system at slot t can possibly be routed. For
this purpose, consider 1 ≤ j ≤ k and consider a packet p that
is buffered in the jth group of FM1’s at slot t− 1, leaves the
jth group of FM1’s at slot t, and has to be buffered in the
system at slot t. Note that (97) and (98) still hold in this case.

We consider the following subcases.
Subcase 2(a): 1 ≤ j ≤ s + 1. In this subcase, we

have τ̃p(t) ≥ 1 = L1, and we also have from (98) and
(99) in (A3) (note that 2 ≤ j + 1 ≤ s + 2 ≤ ℓ) that
τ̃p(t) ≤ Uj + Bj ≤ Uj + |Ψj+1| = Uj+1. Thus, we have
τ̃p(t) ∈ {L1, L1 + 1, . . . , Uj+1} = ∪j+1

i=1Ψi. It then follows
from the routing policy (R3) that packet p can only be routed
to the ith group of FM1’s at slot t for some 1 ≤ i ≤ j + 1.

Subcase 2(b): s+ 2 ≤ j ≤ ℓ− 1. In this subcase, we have
from (97) and (4) in (A2) (note that s+2 ≤ j ≤ ℓ−1 < k) that
τ̃p(t) ≥ Lj−Bj = (Uj−1+1)−Bj ≥ Uj−s−1+1 = Lj−s, and
we also have from (98) and (99) in (A3) (note that 2 < s+3 ≤
j+1 ≤ ℓ) that τ̃p(t) ≤ Uj+Bj ≤ Uj+ |Ψj+1| = Uj+1. Thus,
we have τ̃p(t) ∈ {Lj−s, Lj−s +1, . . . , Uj+1} = ∪j+1

i=j−sΨi. It
then follows from the routing policy (R3) that packet p can
only be routed to the ith group of FM1’s at slot t for some
j − s ≤ i ≤ j + 1.

Subcase 2(c): j = ℓ. In this subcase, we have from (97)
and (4) in (A2) (note that s + 2 < j = ℓ < k) that τ̃p(t) ≥
Lj − Bj = (Uj−1 + 1)− Bj ≥ Uj−s−1 + 1 = Lj−s, and we
also have from (98) and (5) in (A2) (note that 1 < s+3 ≤ j =
ℓ ≤ k−s−2 < k−s−1) that τ̃p(t) ≤ Uj+Bj ≤ Uj+s. Thus,
we have τ̃p(t) ∈ {Lj−s, Lj−s +1, . . . , Uj+s} = ∪j+s

i=j−sΨi. It

then follows from the routing policy (R3) that packet p can
only be routed to the ith group of FM1’s at slot t for some
j − s ≤ i ≤ j + s.

Subcase 2(d): ℓ+1 ≤ j ≤ k−s−1. In this subcase, we have
from (98) and (5) in (A2) (note that 1 < ℓ+1 ≤ j ≤ k−s−1)
that τ̃p(t) ≤ Uj + Bj ≤ Uj+s, and we also have from (97)
and (99) in (A3) (note that ℓ ≤ j−1 ≤ k−s−2 < k−1) that
τ̃p(t) ≥ Lj−Bj = (Uj−1+1)−Bj ≥ (Uj−1+1)−|Ψj−1| =
Uj−2 + 1 = Lj−1. Thus, we have τ̃p(t) ∈ {Lj−1, Lj−1 +
1, . . . , Uj+s} = ∪j+s

i=j−1Ψi. It then follows from the routing
policy (R3) that packet p can only be routed to the ith group
of FM1’s at slot t for some j − 1 ≤ i ≤ j + s.

Subcase 2(e): k − s ≤ j ≤ k. In this subcase, we have
τ̃p(t) ≤ Uk, and we also have from (97) and (99) in (A3) (note
that ℓ < k − s− 1 ≤ j − 1 ≤ k − 1) that τ̃p(t) ≥ Lj −Bj =
(Uj−1 + 1) − Bj ≥ (Uj−1 + 1) − |Ψj−1| = Uj−2 + 1 =
Lj−1. Thus, we have τ̃p(t) ∈ {Lj−1, Lj−1 + 1, . . . , Uk} =
∪k
i=j−1Ψi. It then follows from the routing policy (R3) that

packet p can only be routed to the ith group of FM1’s at slot
t for some j − 1 ≤ i ≤ k.

We summarize the results in Subcases 2(a)–(e) in the
following table.

Second, for each 1 ≤ i ≤ k, we will use the results in
Subcases 2(a)–(e) above to identify the groups of FM1’s such
that packets that are from the output links of these groups
(but not other groups) of FM1’s and have to be buffered in
the system at slot t can possibly be routed to the ith group of
FM1’s at slot t, and show that packets routed to the ith group
of FM1’s at slot t can only come from either the arrival link
or the output links of the jth group of FM1’s at slot t for some
j1 ≤ j ≤ j2, where j1 and j2 are given by (3) (note that k is
odd). For this purpose, consider 1 ≤ i ≤ k and consider the
following subcases.

Subcase 2(a′): i = 1. In this subcase, we have from (3)
that j1 = max{i − 1, 1} = 1 (as i − 1 = 0 < 1) and j2 =
min{i+ s, ℓ} = s+ 1 (as i+ s = s+ 1 < s+ 3 ≤ ℓ).

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ s + 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 2(a) holds (as i = 1) and hence
packets from the output links of the jth group of FM1’s
can possibly be routed to the ith group of FM1’s at slot
t.

• Suppose that s + 2 ≤ j ≤ ℓ − 1. Then the condition
j − s ≤ i ≤ j + 1 in Subcase 2(b) does not hold (as
i = 1 < 2 ≤ j − s), and hence packets from the output
links of the jth group of FM1’s cannot be routed to the
ith group of FM1’s at slot t.

• Suppose that j = ℓ. Then the condition j−s ≤ i ≤ j+s
in Subcase 2(c) does not hold (as i = 1 < 2 < ℓ − s =
j − s), and hence packets from the output links of the
jth group of FM1’s cannot be routed to the ith group of
FM1’s at slot t.

• Suppose that ℓ+ 1 ≤ j ≤ k − s− 1. Then the condition
j − 1 ≤ i ≤ j + s in Subcase 2(d) does not hold (as
i = 1 < ℓ ≤ j − 1), and hence packets from the output
links of the jth group of FM1’s cannot be routed to the
ith group of FM1’s at slot t.
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k = 2ℓ− 1 and ℓ ≥ s+ 3
j 1 ≤ j ≤ s+ 1 s+ 2 ≤ j ≤ ℓ− 1 j = ℓ ℓ+ 1 ≤ j ≤ k − s− 1 k − s ≤ j ≤ k
i 1 ≤ i ≤ j + 1 j − s ≤ i ≤ j + 1 j − s ≤ i ≤ j + s j − 1 ≤ i ≤ j + s j − 1 ≤ i ≤ k

TABLE IV
FOR EACH 1 ≤ j ≤ k, THE RANGE OF i GIVEN IN SUBCASES 2(A)–(E) SUCH THAT PACKETS FROM THE OUTPUT LINKS OF THE jTH GROUP OF FM1’S

CAN POSSIBLY BE ROUTED TO THE iTH GROUP OF FM1’S AT SLOT t.

• Suppose that k− s ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 2(e) does not hold (as i = 1 < s+4 ≤
2ℓ − s − 2 = k − s − 1 ≤ j − 1), and hence packets
from the output links of the jth group of FM1’s cannot
be routed to the ith group of FM1’s at slot t.

As such, we deduce that packets routed to the ith group of
FM1’s at slot t can only come from either the arrival link or
the output links of the jth group of FM1’s at slot t for some
1 ≤ j ≤ s+ 1, i.e., j1 ≤ j ≤ j2.

Subcase 2(b′): 2 ≤ i ≤ s+2. In this subcase, we have from
(3) that j1 = max{i − 1, 1} = i − 1. If s + 3 ≤ ℓ ≤ 2s + 2,
then we have from (3) that

j2 = min{i+ s, ℓ}

=

{
i+ s, if 2 ≤ i ≤ ℓ− s− 1,

ℓ, if ℓ− s ≤ i ≤ s+ 2.

On the other hand, if ℓ ≥ 2s+ 3, then we have from (3) that
j2 = min{i+ s, ℓ} = i+ s.

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ s + 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 2(a) holds if and only if i − 1 =
max{i− 1, 1} ≤ j ≤ s+ 1.

• Suppose that s+ 2 ≤ j ≤ ℓ− 1. If s+ 3 ≤ ℓ ≤ 2s+ 2,
then the condition j − s ≤ i ≤ j + 1 in Subcase 2(b)
holds if and only if

s+ 2 = max{i− 1, s+ 2}
≤ j ≤ min{i+ s, ℓ− 1}

=

{
i+ s, if 2 ≤ i ≤ ℓ− s− 1,

ℓ− 1, if ℓ− s ≤ i ≤ s+ 2.

On the other hand, if ℓ ≥ 2s + 3, then the condition
j − s ≤ i ≤ j + 1 in Subcase 2(b) holds if and only if
s+2 = max{i−1, s+2} ≤ j ≤ min{i+s, ℓ−1} = i+s.

• Suppose that j = ℓ. If s + 3 ≤ ℓ ≤ 2s + 2, then the
condition j − s ≤ i ≤ j + s in Subcase 2(c) holds if and
only if ℓ− s = max{ℓ− s, 2} ≤ i ≤ min{ℓ+ s, s+2} =
s+2. On the other hand, if ℓ ≥ 2s+3, then the condition
j − s ≤ i ≤ j + s in Subcase 2(c) does not hold (as
i ≤ s+ 2 ≤ ℓ− s− 1 = j − s− 1 < j − s).

• Suppose that ℓ+ 1 ≤ j ≤ k − s− 1. Then the condition
j − 1 ≤ i ≤ j + s in Subcase 2(d) does not hold (as
i ≤ s+ 2 ≤ ℓ− 1 ≤ j − 2 < j − 1).

• Suppose that k− s ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 2(e) does not hold (as i ≤ s + 2 ≤
2ℓ− s− 4 = k − s− 3 ≤ j − 3 < j − 1).

As such, we deduce the following results:
▲ If s+3 ≤ ℓ ≤ 2s+2, then packets routed to the ith group

of FM1’s at slot t are either from the arrival link or from

the output links of the jth group of FM1’s at slot t for
some

i− 1 ≤ j ≤

{
i+ s, if 2 ≤ i ≤ ℓ− s− 1,

ℓ, if ℓ− s ≤ i ≤ s+ 2,

i.e., j1 ≤ j ≤ j2.
▲ On the other hand, if ℓ ≥ 2s+ 3, then packets routed to

the ith group of FM1’s at slot t are either from the arrival
link or from the output links of the jth group of FM1’s
at slot t for some i− 1 ≤ j ≤ i+ s, i.e., j1 ≤ j ≤ j2.

Subcase 2(c′): s + 3 ≤ i ≤ ℓ − 1. Note that ℓ ≥ s + 4
in this subcase. In this subcase, we have from (3) that j1 =
max{i− 1, 1} = i− 1. If s+ 4 ≤ ℓ ≤ 2s+ 3, then we have
from (3) that j2 = min{i + s, ℓ} = ℓ. On the other hand, if
ℓ ≥ 2s+ 4, then we have from (3) that

j2 = min{i+ s, ℓ}

=

{
i+ s, if s+ 3 ≤ i ≤ ℓ− s− 1,

ℓ, if ℓ− s ≤ i ≤ ℓ− 1.

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ s + 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 2(a) does not hold (as i ≥ s+ 3 ≥
j + 2 > j + 1).

• Suppose that s+ 2 ≤ j ≤ ℓ− 1. If s+ 4 ≤ ℓ ≤ 2s+ 3,
then the condition j − s ≤ i ≤ j + 1 in Subcase 2(b)
holds if and only if i − 1 = max{i − 1, s + 2} ≤ j ≤
min{i+s, ℓ−1} = ℓ−1. On the other hand, if ℓ ≥ 2s+4,
then the condition j−s ≤ i ≤ j+1 in Subcase 2(b) holds
if and only if

i− 1 = max{i− 1, s+ 2}
≤ j ≤ min{i+ s, ℓ− 1}

=

{
i+ s, if s+ 3 ≤ i ≤ ℓ− s− 1,

ℓ− 1, if ℓ− s ≤ i ≤ ℓ− 1.

• Suppose that j = ℓ. If s + 4 ≤ ℓ ≤ 2s + 3, then the
condition j − s ≤ i ≤ j + s in Subcase 2(c) holds (as
j − s = ℓ − s ≤ s + 3 ≤ i ≤ ℓ − 1 < ℓ + s = j + s).
On the other hand, if ℓ ≥ 2s + 4, then the condition
j − s ≤ i ≤ j + s in Subcase 2(c) holds if and only if
ℓ−s = max{ℓ−s, s+3} ≤ i ≤ min{ℓ+s, ℓ−1} = ℓ−1.

• Suppose that ℓ+ 1 ≤ j ≤ k − s− 1. Then the condition
j − 1 ≤ i ≤ j + s in Subcase 2(d) does not hold (as
i ≤ ℓ− 1 ≤ j − 2 < j − 1).

• Suppose that k− s ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 2(e) does not hold (as i ≤ ℓ − 1 ≤
2ℓ− s− 5 = k − s− 4 ≤ j − 4 < j − 1).

As such, we deduce the following results:
▲ If s+4 ≤ ℓ ≤ 2s+3, then packets routed to the ith group

of FM1’s at slot t are either from the arrival link or from
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the output links of the jth group of FM1’s at slot t for
some i− 1 ≤ j ≤ ℓ, i.e., j1 ≤ j ≤ j2.

▲ On the other hand, if ℓ ≥ 2s+ 4, then packets routed to
the ith group of FM1’s at slot t are either from the arrival
link or from the output links of the jth group of FM1’s
at slot t for some

i− 1 ≤ j ≤

{
i+ s, if s+ 3 ≤ i ≤ ℓ− s− 1,

ℓ, if ℓ− s ≤ i ≤ ℓ− 1,

i.e., j1 ≤ j ≤ j2.
Subcase 2(d′): i = ℓ. In this subcase, we have from (3) that

j1 = i− 1 = ℓ− 1 and j2 = i+ 1 = ℓ+ 1.
It is easy to see the following results:
• Suppose that 1 ≤ j ≤ s+ 1. Then the condition 1 ≤ i ≤
j + 1 in Subcase 2(a) does not hold (as i = ℓ ≥ s+ 3 ≥
j + 2 > j + 1).

• Suppose that s + 2 ≤ j ≤ ℓ − 1. Then the condition
j − s ≤ i ≤ j + 1 in Subcase 2(b) holds if and only
if ℓ − 1 = max{ℓ − 1, s + 2} = max{i − 1, s + 2} ≤
j ≤ min{i+ s, ℓ− 1} = min{ℓ+ s, ℓ− 1} = ℓ− 1, i.e.,
j = ℓ− 1. Thus, if j = ℓ− 1 (resp., s+ 2 ≤ j ≤ ℓ− 2),
then packets from the output links of the jth group of
FM1’s can possibly (resp., cannot) be routed to the ith

group of FM1’s at slot t.
• Suppose that j = ℓ. Then the condition j−s ≤ i ≤ j+s

in Subcase 2(c) holds (as j − s = ℓ − s < i = ℓ <
ℓ + s = j + s). Thus, packets from the output links of
the jth group of FM1’s can possibly be routed to the ith

group of FM1’s at slot t.
• Suppose that ℓ+ 1 ≤ j ≤ k − s− 1. Then the condition
j − 1 ≤ i ≤ j + s in Subcase 2(d) holds if and only if
ℓ+1 = min{ℓ+1, k− s−1} = min{i+1, k− s−1} ≥
j ≥ max{i− s, ℓ+1} = max{ℓ− s, ℓ+1} = ℓ+1, i.e.,
j = ℓ+1. Thus, if j = ℓ+1 (resp., k−s−1 ≥ j ≥ ℓ+2),
then packets from the output links of the jth group of
FM1’s can possibly (resp., cannot) be routed to the ith

group of FM1’s at slot t.
• Suppose that k− s ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 2(e) does not hold (as i = ℓ ≤ 2ℓ− s−
3 = k − s− 2 ≤ j − 2 < j − 1).

As such, we deduce that packets routed to the ith group of
FM1’s at slot t can only come from either the arrival link or
the output links of the jth group of FM1’s at slot t for some
ℓ− 1 ≤ j ≤ ℓ+ 1, i.e., j1 ≤ j ≤ j2.

Subcase 2(e′): ℓ+ 1 ≤ i ≤ k − s− 2. Note that ℓ ≥ s+ 4
in this subcase. In this subcase, we have from (3) that j2 =
min{i + 1, k} = i + 1. If s + 4 ≤ ℓ ≤ 2s + 3, then we have
from (3) that j1 = max{i − s, ℓ} = ℓ. On the other hand, if
ℓ ≥ 2s+ 4, then we have from (3) that

j1 = max{i− s, ℓ}

=

{
ℓ, if ℓ+ 1 ≤ i ≤ ℓ+ s,

i− s, if ℓ+ s+ 1 ≤ i ≤ k − s− 2.

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ s + 1. Then the condition 1 ≤
i ≤ j + 1 in Subcase 2(a) does not hold (as i ≥ ℓ+ 1 ≥
s+ 5 ≥ j + 4 > j + 1).

• Suppose that s + 2 ≤ j ≤ ℓ − 1. Then the condition
j − s ≤ i ≤ j + 1 in Subcase 2(b) does not hold (as
i ≥ ℓ+ 1 ≥ j + 2 > j + 1).

• Suppose that j = ℓ. If s + 4 ≤ ℓ ≤ 2s + 3, then the
condition j − s ≤ i ≤ j + s in Subcase 2(c) holds (as
j − s = ℓ− s < ℓ+ 1 ≤ i ≤ k− s− 2 ≤ ℓ+ s = j + s).
On the other hand, if ℓ ≥ 2s + 4, then the condition
j − s ≤ i ≤ j + s in Subcase 2(c) holds if and only if
ℓ+1 = max{ℓ−s, ℓ+1} ≤ i ≤ min{ℓ+s, k−s−2} =
ℓ+ s.

• Suppose that ℓ+1 ≤ j ≤ k−s−1. If s+4 ≤ ℓ ≤ 2s+3,
then the condition j − 1 ≤ i ≤ j + s in Subcase 2(d)
holds if and only if i + 1 = min{i + 1, k − s − 1} ≥
j ≥ max{i − s, ℓ + 1} = ℓ + 1. On the other hand, if
ℓ ≥ 2s + 4, then the condition j − 1 ≤ i ≤ j + s in
Subcase 2(d) holds if and only if

i+ 1 = min{i+ 1, k − s− 1}
≥ j ≥ max{i− s, ℓ+ 1}

=

{
ℓ+ 1, if ℓ+ 1 ≤ i ≤ ℓ+ s,

i− s, if ℓ+ s+ 1 ≤ i ≤ k − s− 2.

• Suppose that k− s ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 2(e) does not hold (as i ≤ k− s− 2 ≤
j − 2 < j − 1).

As such, we deduce the following results:
▲ If s+4 ≤ ℓ ≤ 2s+3, then packets routed to the ith group

of FM1’s at slot t are either from the arrival link or from
the output links of the jth group of FM1’s at slot t for
some i+ 1 ≥ j ≥ ℓ, i.e., j2 ≥ j ≥ j1.

▲ On the other hand, if ℓ ≥ 2s+ 4, then packets routed to
the ith group of FM1’s at slot t are either from the arrival
link or from the output links of the jth group of FM1’s
at slot t for some

i+ 1 ≥ j ≥

{
ℓ, if ℓ+ 1 ≤ i ≤ ℓ+ s,

i− s, if ℓ+ s+ 1 ≤ i ≤ k − s− 2,

i.e., j2 ≥ j ≥ j1.
Subcase 2(f ′): k−s−1 ≤ i ≤ k−1. In this subcase, we have

from (3) that j2 = min{i+1, k} = i+1. If s+3 ≤ ℓ ≤ 2s+2,
then we have from (3) that

j1 = max{i− s, ℓ}

=

{
ℓ, if k − s− 1 ≤ i ≤ ℓ+ s,

i− s, if ℓ+ s+ 1 ≤ i ≤ k − 1.

On the other hand, if ℓ ≥ 2s+ 3, then we have from (3) that
j1 = max{i− s, ℓ} = i− s.

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ s+ 1. Then the condition 1 ≤ i ≤
j + 1 in Subcase 2(a) does not hold (as i ≥ k − s− 1 ≥
s+ 4 ≥ j + 3 > j + 1).

• Suppose that s + 2 ≤ j ≤ ℓ − 1. Then the condition
j − s ≤ i ≤ j + 1 in Subcase 2(b) does not hold (as
i ≥ k − s− 1 ≥ ℓ+ 1 ≥ j + 2 > j + 1).

• Suppose that j = ℓ. If s + 3 ≤ ℓ ≤ 2s + 2, then the
condition j − s ≤ i ≤ j + s in Subcase 2(c) holds if
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and only if k − s − 1 = max{ℓ − s, k − s − 1} ≤ i ≤
min{ℓ+s, k−1} = ℓ+s. On the other hand, if ℓ ≥ 2s+3,
then the condition j−s ≤ i ≤ j+s in Subcase 2(c) does
not hold (as i ≥ k−s−1 ≥ ℓ+s+1 = j+s+1 > j+s).

• Suppose that ℓ+1 ≤ j ≤ k−s−1. If s+3 ≤ ℓ ≤ 2s+2,
then the condition j−1 ≤ i ≤ j+s in Subcase 2(d) holds
if and only if

k − s− 1 = min{i+ 1, k − s− 1

≥ j ≥ max{i− s, ℓ+ 1}

=

{
ℓ+ 1, if k − s− 1 ≤ i ≤ ℓ+ s,

i− s, if ℓ+ s+ 1 ≤ i ≤ k − 1.

On the other hand, if ℓ ≥ 2s + 3, then the condition
j − 1 ≤ i ≤ j + s in Subcase 2(d) holds if and only if
k−s−1 = min{i+1, k−s−1} ≥ j ≥ max{i−s, ℓ+1} =
i− s.

• Suppose that k − s ≤ j ≤ k. Then the condition j −
1 ≤ i ≤ k in Subcase 2(e) holds if and only if i + 1 =
min{i+ 1, k} ≥ j ≥ k − s.

As such, we deduce the following results:
▲ If s+3 ≤ ℓ ≤ 2s+2, then packets routed to the ith group

of FM1’s at slot t are either from the arrival link or from
the output links of the jth group of FM1’s at slot t for
some

i+ 1 ≥ j ≥

{
ℓ, if k − s− 1 ≤ i ≤ ℓ+ s,

i− s, if ℓ+ s+ 1 ≤ i ≤ k − 1,

i.e., j2 ≥ j ≥ j1.
▲ On the other hand, if ℓ ≥ 2s+ 3, then packets routed to

the ith group of FM1’s at slot t are either from the arrival
link or from the output links of the jth group of FM1’s
at slot t for some i+ 1 ≥ j ≥ i− s, i.e., j2 ≥ j ≥ j1.

Subcase 2(g′): i = k. In this subcase, we have from (3) that
j2 = min{i+ 1, k} = k and j1 = max{i− s, ℓ} = k − s.

It is easy to see the following results:
• Suppose that 1 ≤ j ≤ s+ 1. Then the condition 1 ≤ i ≤
j +1 in Subcase 2(a) does not hold (as i = k > ℓ− 1 ≥
s+ 2 ≥ j + 1).

• Suppose that s + 2 ≤ j ≤ ℓ − 1. Then the condition
j − s ≤ i ≤ j + 1 in Subcase 2(b) does not hold (as
i = k > ℓ ≥ j + 1).

• Suppose that j = ℓ. Then the condition j−s ≤ i ≤ j+s
in Subcase 2(c) does not hold (as i = k > ℓ+s = j+s).

• Suppose that ℓ+ 1 ≤ j ≤ k − s− 1. Then the condition
j − 1 ≤ i ≤ j + s in Subcase 2(d) does not hold (as
i = k > k − 1 ≥ j + s).

• Suppose that k− s ≤ j ≤ k. Then the condition j − 1 ≤
i ≤ k in Subcase 2(e) holds (as i = k).

As such, we deduce that packets routed to the ith group of
FM1’s at slot t can only come from either the arrival link or
the output links of the jth group of FM1’s at slot t for some
k ≥ j ≥ k − s, i.e., j2 ≥ j ≥ j1.

APPENDIX B
PROOF OF THEOREM 6

Note that we have Bi = Bk−i+1 for 1 ≤ i ≤ ⌈k/2⌉ in (27)
and (28).

(i) It suffices to show that Bi is recursively given by (33)
for 2 ≤ i ≤ ⌈k/2⌉. Suppose that 2 ≤ i ≤ ⌈k/2⌉. We consider
the following three cases.

Case 1: 2 ≤ i ≤ s + 1. For s + 1 ≤ k ≤ 2s + 2 (resp.,
k ≥ 2s+3), we have from (27) (resp., (28)) and 1 ≤ i− 1 <
i ≤ ⌈k/2⌉ (resp., 1 ≤ i− 1 < i ≤ s+ 1) that

Bi = Σi−1
j=1((m− 1)Bj + 1) + 1

= Σi−2
j=1((m− 1)Bj + 1) + ((m− 1)Bi−1 + 1) + 1

= (Bi−1 − 1) + ((m− 1)Bi−1 + 1) + 1

= mBi−1 + 1.

Case 2: i = s + 2. In this case, we have k ≥ 2s + 3 (as
⌈k/2⌉ ≥ i = s + 2), and hence it follows from (28) and
i− 1 = s+ 1 that

Bi = Σi−1
j=i−s((m− 1)Bj + 1)

= Σi−2
j=i−s−1((m− 1)Bj + 1)

+((m− 1)Bi−1 + 1)− ((m− 1)Bi−s−1 + 1)

= (Bi−1 − 1) + (m− 1)Bi−1 − (m− 1)Bi−s−1

= mBi−1 − (m− 1)Bi−s−1 − 1.

Case 3: i ≥ s + 3. In this case, we have k > 2s + 3 (as
⌈k/2⌉ ≥ i ≥ s + 3), and hence it follows from (28) and
i > i− 1 ≥ s+ 2 that

Bi = Σi−1
j=i−s((m− 1)Bj + 1)

= Σi−2
j=i−s−1((m− 1)Bj + 1)

+((m− 1)Bi−1 + 1)− ((m− 1)Bi−s−1 + 1)

= Bi−1 + (m− 1)Bi−1 − (m− 1)Bi−s−1

= mBi−1 − (m− 1)Bi−s−1.

(ii) It suffices to show that Bi is given by (34) for 1 ≤ i ≤
⌈k/2⌉. We prove this by induction on i. It is clear from (27)
and (28) that B1 = 1 and hence (34) holds for i = 1 (note that
q1 = ⌈1/(s+1)⌉−1 = 0). Assume as the induction hypothesis
that (34) holds up to i − 1 for some 1 ≤ i − 1 ≤ ⌈k/2⌉ − 1.
Now consider the following three cases.

Case 1: qi = 0. In this case, we have 2 ≤ i ≤ (qi + 1)(s+
1) = s+ 1. Thus, we have qi−1 = ⌈(i− 1)/(s+ 1)⌉ − 1 = 0.
It then follows from (33) and the induction hypothesis, i.e.,
(34) holds for i− 1 (note that qi−1 = 0), that

Bi = mBi−1 + 1

= m(mi−1/(m− 1)− 1/(m− 1)) + 1

= mi/(m− 1)− 1/(m− 1).

Thus, we have proved that (34) holds for i (note that qi = 0).
Case 2: qi ≥ 1 and i = qi(s + 1) + 1. In this case, we

have qi−1 = ⌈(i − 1)/(s + 1)⌉ − 1 = qi − 1 and qi−s−1 =
⌈(i− s− 1)/(s+ 1)⌉ − 1 = qi − 1. We then consider the two
subcases qi = 1 and qi ≥ 2 separately.

Subcase 2(a): qi = 1. In this subcase, we have i = s + 2
and it follows from (33) and the induction hypothesis, i.e.,
(34) holds for i− 1 (note that qi−1 = qi − 1 = 0), that

Bi = mBi−1 − (m− 1)Bi−s−1 − 1

= m(mi−1/(m− 1)− 1/(m− 1))− (m− 1)B1 − 1

= mi/(m− 1)− (1 +m)− 1/(m− 1).
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Thus, we have proved that (34) holds for i (note that qi = 1).
Subcase 2(b): qi ≥ 2. In this subcase, we have from (33)

(note that i = qi(s+ 1) + 1 ≥ 2(s+ 1) + 1 > s+ 3) and the
induction hypothesis, i.e., (34) holds for i−1 and i−s−1 (note
that i−1 > i−s−1 = (qi−1)(s+1)+1 ≥ 1 ·(s+1)+1 > 1
and qi−1 = qi−s−1 = qi − 1), that

Bi = mBi−1 − (m− 1)Bi−s−1

= Σqi−1
j=0 (−1)j(1/j!)

×[j(i− j(s+ 1)− 1)j−1 +m(i− j(s+ 1)− 1)j ]

×(m− 1)j−1mi−j(s+1)−1 −m/(m− 1)

−Σqi−1
j=0 (−1)j(1/j!)

×[j(i− (j + 1)(s+ 1))j−1

+(i−m(j + 1)(s+ 1))j ]

×(m− 1)jmi−(j+1)(s+1)−1 + 1

= mi/(m− 1)

+Σqi−1
j=1 (−1)j(1/j!)

×{[j(i− j(s+ 1)− 1)j−1

+j(j − 1)(i− j(s+ 1))j−2]

+m[(i− j(s+ 1)− 1)j + j(i− j(s+ 1))j−1]}
×(m− 1)j−1mi−j(s+1)−1

−(−1)qi−1(m+ 1)(m− 1)qi−1 − 1/(m− 1)

= Σqi
j=0(−1)j(1/j!)

×[j(i− j(s+ 1))j−1 +m(i− j(s+ 1))j ]

×(m− 1)j−1mi−j(s+1)−1 − 1/(m− 1),

where in the last two equalities we have used i−qi(s+1) = 1,
(1)j = j! for qi − 2 ≤ j ≤ qi, j(i− j(s+1)− 1)j−1 + j(j −
1)(i− j(s+ 1))j−2 = j(i− j(s+ 1))j−1 for 1 ≤ j ≤ qi − 1,
and (i− j(s+1)− 1)j + j(i− j(s+1))j−1 = (i− j(s+1))j
for 1 ≤ j ≤ qi − 1. Thus, we have proved that (34) holds for
i.

Case 3: qi ≥ 1 and qi(s + 1) + 2 ≤ i ≤ (qi + 1)(s + 1).
In this case, we have qi−1 = ⌈(i− 1)/(s+ 1)⌉ − 1 = qi and
qi−s−1 = ⌈(i − s − 1)/(s + 1)⌉ − 1 = qi − 1. Similar to the
proof in Subcase 2(b) above, we have from (33) (note that
i ≥ qi(s+1)+ 2 ≥ 1 · (s+1)+ 2 = s+3) and the induction
hypothesis, i.e., (34) holds for i − 1 and i − s − 1 (note that
i− 1 > i− s− 1 ≥ (qi − 1)(s+ 1) + 2 > 1, qi−1 = qi, and
qi−s−1 = qi − 1), that

Bi = mBi−1 − (m− 1)Bi−s−1

= Σqi
j=0(−1)j(1/j!)

×[j(i− j(s+ 1)− 1)j−1 +m(i− j(s+ 1)− 1)j ]

×(m− 1)j−1mi−j(s+1)−1 −m/(m− 1)

−Σqi−1
j=0 (−1)j(1/j!)

×[j(i− (j + 1)(s+ 1))j−1 +m(i− (j + 1)(s+ 1))j ]

×(m− 1)jmi−(j+1)(s+1)−1 + 1

= mi/(m− 1)

+Σqi
j=1(−1)j(1/j!)

×{[j(i− j(s+ 1)− 1)j−1

+j(j − 1)(i− j(s+ 1))j−2]

+m[(i− j(s+ 1)− 1)j + j(i− j(s+ 1))j−1]}
×(m− 1)j−1mi−j(s+1)−1 − 1/(m− 1)

= Σqi
j=0(−1)j(1/j!)

×[j(i− j(s+ 1))j−1 +m(i− j(s+ 1))j ]

×(m− 1)j−1mi−j(s+1)−1 − 1/(m− 1),

where in the last equality we have used j(i − j(s + 1) −
1)j−1 + j(j − 1)(i− j(s+ 1))j−2 = j(i− j(s+ 1))j−1 and
(i− j(s+1)− 1)j + j(i− j(s+1))j−1 = (i− j(s+1))j for
1 ≤ j ≤ qi. Thus, we have proved that (34) holds for i.

APPENDIX C
PROOF OF (62)

Suppose that s + 2 ≤ i ≤ (ms+1 − 1)/(m − 1) + s. Then
we have qi = ⌈i/(s+ 1)⌉ − 1 ≥ 1 and

ms+1

≥ (i− s)(m− 1) + 1 ≥ (qi(s+ 1) + 1− s)(m− 1) + 1

= (qi − 1)(s+ 1)(m− 1) + 2m− 1. (100)

Write Bi in (34) as follows:

Bi = Σqi
j=0(−1)jδj − 1/(m− 1), (101)

where

δj = (1/j!)[j(i− j(s+ 1))j−1 +m(i− j(s+ 1))j ]

×(m− 1)j−1mi−j(s+1)−1 (102)

for 0 ≤ j ≤ qi. Note that δj > 0 (as i− j(s+1) ≥ i− qi(s+
1) ≥ 1 and m ≥ 2) for 0 ≤ j ≤ qi.

We claim that the sequence (δj)
qi
j=1 is strictly decreasing.

Suppose 1 ≤ j ≤ qi − 1. Note that

δj+1 = (1/(j + 1)!)

×[(j + 1)(i− (j + 1)(s+ 1))j

+m(i− (j + 1)(s+ 1))j+1]

×(m− 1)jmi−(j+1)(s+1)−1. (103)

To show that δj > δj+1, we first give upper bounds for the
two terms (i − (j + 1)(s + 1))j and (i − (j + 1)(s + 1))j+1

in (103) as follows: We have

(i− (j + 1)(s+ 1))j

= (i− (j + 1)(s+ 1))j−1(i− (j + 1)(s+ 1) + j − 1)

≤ (i− j(s+ 1))j−1(qi − 1)(s+ 1), (104)

where the inequality follows from (i − j(s + 1))j−1 ≥ (i −
(j + 1)(s + 1))j−1 (as i − j(s + 1) > i − (j + 1)(s + 1) ≥
i − qi(s + 1) ≥ 1 and j − 1 ≥ 0) and 0 < i − (j + 1)(s +
1) + j − 1 ≤ (qi + 1)(s + 1) − (j + 1)(s + 1) + j − 1 =
(qi − 1)(s + 1) − (j − 1)s ≤ (qi − 1)(s + 1). Similarly, we
have

(i− (j + 1)(s+ 1))j+1

= (i− (j + 1)(s+ 1))j(i− (j + 1)(s+ 1) + j)

≤ (i− j(s+ 1))j((qi − 1)(s+ 1) + 1). (105)
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As such, it follows that

δj − δj+1

= (1/j!)[j(i− j(s+ 1))j−1 +m(i− j(s+ 1))j ]

×(m− 1)j−1mi−j(s+1)−1

−(1/(j + 1)!)[(j + 1)(i− (j + 1)(s+ 1))j

+m(i− (j + 1)(s+ 1))j+1]

×(m− 1)jmi−(j+1)(s+1)−1

≥ (1/j!)[jms+1 − (qi − 1)(s+ 1)(m− 1)]

×(i− j(s+ 1))j−1(m− 1)j−1mi−(j+1)(s+1)−1

+(1/(j + 1)!)

×[(j + 1)ms+1 − ((qi − 1)(s+ 1) + 1)(m− 1)]

×(i− j(s+ 1))j(m− 1)j−1mi−(j+1)(s+1)

≥ (1/j!)(2m− 1)(i− j(s+ 1))j−1

×(m− 1)j−1mi−(j+1)(s+1)−1

+(1/(j + 1)!)m(i− j(s+ 1))j

×(m− 1)j−1mi−(j+1)(s+1)

> 0,

where the equality follows from (102) and (103), the first
inequality follows from (104), (105), and m ≥ 2, and the
second inequality follows from j ≥ 1 and (100). Thus, we
have proved that the sequence (δj)

qi
j=1 is strictly decreasing.

We also claim that

δ0 − δ1 − 1/(m− 1) ≤ Bi ≤ δ0 − 1/(m− 1). (106)

If qi is odd, say qi = 2ℓ − 1 for some ℓ ≥ 1, then it follows
from (101), the strict monotonicity of the sequence (δj)

qi
j=1,

and the positivity of the δj’s that

Bi = δ0 − Σℓ−1
j=1(δ2j−1 − δ2j)− δ2ℓ−1 − 1/(m− 1)

≤ δ0 − 1/(m− 1)

and

Bi = δ0 − δ1 +Σℓ−1
j=1(δ2j − δ2j+1)− 1/(m− 1)

≥ δ0 − δ1 − 1/(m− 1).

On the other hand, if qi is even, say qi = 2ℓ for some ℓ ≥ 1,
then we have

Bi = δ0 − Σℓ
j=1(δ2j−1 − δ2j)− 1/(m− 1)

≤ δ0 − 1/(m− 1)

and

Bi = δ0 − δ1 +Σℓ−1
j=1(δ2j − δ2j+1) + δ2ℓ − 1/(m− 1)

≥ δ0 − δ1 − 1/(m− 1).

Thus, we have proved that (106) holds.
We are now in a position to show that (62) holds. From

(106), (102), and m ≥ 2, we have

Bi ≤ δ0 − 1/(m− 1) < δ0 = mi/(m− 1) ≤ 2mi−1. (107)

From (106), (102), ms+1 ≥ (i−s)(m−1)+1, and i ≥ s+2,
we have

Bi ≥ δ0 − δ1 − 1/(m− 1)

= mi/(m− 1)− [1 +m(i− s− 1)]mi−s−2

−1/(m− 1)

= [ms+1 − (i− s− 1)(m− 1)]mi−s−1/(m− 1)

−mi−s−2 − 1/(m− 1)

≥ mi−s/(m− 1)−mi−s−2 − 1/(m− 1)

= mi−s−1 + (mi−s−2 − 1)/(m− 1)

≥ mi−s−1. (108)

By combining (107) and (108), we obtain (62).
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