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Abstract—The design of optical buffers for packet contention
resolution has been recognized as a key issue in all-optical packet
switching. One of the most general buffering schemes is priority
queues, which includes first-in first-out (FIFO) queues and last-
in first-out (LIFO) queues as special cases. In a priority queue,
each packet is associated with a unique priority upon its arrival,
the packet with the highest priority is sent out from the queue
whenever there is a departure request and there are packets in
the queue, and the packet with the lowest priority is dumped
from the queue whenever there is a buffer overflow. In this
paper, we consider the constructions of optical priority queues
by using a feedback system consisting of an optical (bufferless)
crossbar switch and multiple optical FIFO multiplexers with
delay one (FM1’s) in the feedback path for buffering packets
and feeding packets back to the switch. Such a feedback system
is a generalization of that used in one of the authors’ earlier
attempt for the constructions of optical priority queues in Tang
et al. (2020). We fix the no-buffering problem in Tang et al. (2020)
by using optical FM1’s to replace the optical FIFO multiplexers
(FM’s) in Tang et al. (2020), which enables us to successfully
achieve an exact emulation of a priority queue. We improve
the utilization of buffering capacity over that in Tang et al.
(2020) by routing packets to the optical FM1’s according to their
buffering tags instead of their tags as used in Tang et al. (2020).
We also extend and generalize the construction in Tang et al.
(2020) and obtain a much larger class of constructions of optical
priority queues. Our constructions are made possible by showing
that the highest-priority (resp., lowest-priority) packet is always
available at the input links of the switch whenever it needs to
be routed to the departure (resp., loss) link, and by showing
that there is no collision and there is no buffer overflow at any
FM1 at any time so that there is no internal packet loss at any
time. Our complexity analysis shows that by using a feedback
system consisting of an optical (M + 2) × (M + 2) (bufferless)
crossbar switch and M fiber delay lines, we can achieve a buffer
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size of 2O(
√
αM), where α is a constant that depends on the

parameters used in our constructions. Furthermore, we show
that the best buffer size that we can achieve is 2O(

√
4M/15). Our

result (exponential in
√
M ) substantially improves on the best

known result (polynomial in M ) in the literature. Our numerical
results show that the construction complexity of our constructions
is lower than that of the construction in Tang et al. (2020), and
the actual saving, in terms of the number of 2 × 2 switches
needed, by our constructions could be quite significant even in
the tiny-buffer and small-buffer regimes.

Index Terms—Eneström-Kakeya theorem, Descartes’ rule of
signs, FIFO multiplexers, optical buffers, optical queues, optical
switches, priority queues.

I. INTRODUCTION

Current packet-switched networks suffer from the notorious
optical-electrical-optical (O-E-O) conversion, which is quite
expensive and time-consuming, and hence cannot keep up with
the pace of the growing optical fiber link capacity. A natural
and attractive solution for overcoming the existing O-E-O hur-
dle and making good use of the tremendous bandwidth offered
by optical fiber links is all-optical packet switching. However,
optical random-access memory (RAM) is not available yet for
contention resolution among packets competing for the same
resources. Fortunately, we only need buffering schemes that
can exactly emulate certain special arrival/departure patterns
in many packet-switched networks. Such buffering schemes
with special arrival/departure patterns are generally known as
queues in the context of queueing theory.

In all-optical packet switching, the design of optical queues
has been well recognized as a very challenging problem. In
the last two-plus decades, there have been extensive studies on
the constructions of a variety of optical queues by using fiber
delay lines as the storage media and using optical (bufferless)
crossbar switches to direct optical packets through the fiber
delay lines in a carefully designed manner so as to achieve
exact emulations of the optical queues. Such Switched-Delay-
Lines (SDL) constructions of optical queues by using optical
crossbar switches and fiber delay lines include output-buffered
switches, first-in first-out (FIFO) multiplexers [1]–[12], FIFO
queues, last-in first-out (LIFO) queues, priority queues [13]–
[19], time slot interchanges, linear compressors, linear decom-
pressors, non-overtaking delay lines, flexible delay lines, FIFO
contractors, LIFO contractors, and absolute contractors. Due to
space constraint, we only list the references [1]–[19] on optical
FIFO multiplexers (FM’s) and optical priority queues that are
directly related to the constructions in this paper, and results
on the other types of optical queues and results on fundamental
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complexity, performance analysis, and review articles for SDL
constructions of optical queues can be found in the references
therein.

The main research issue in SDL constructions of optical
queues is on the design of the delays of the fiber delay
lines and the design of the routing policy performed by the
optical crossbar switches, which are closely related and highly
coupled. As in most works on SDL constructions of optical
queues in the literature, in this paper we consider the following
discrete-time settings: (i) Time is slotted and synchronized. (ii)
Packets are of the same size so that a packet can be transmitted
through a link within a time slot. (iii) An optical M × M
(bufferless) crossbar switch is a network element with M
input links and M output links that can realize all of the M !
permutations between its inputs and its outputs. (iv) A fiber
delay line with delay d is a network element with one input
link and one output link that requires d time slots for a packet
to traverse through. We note that variable-size packets can be
easily taken care of by introducing packet segmentation at the
source and packet reassembly at the destination. For reason of
conciseness, in the rest of this paper we simply refer to time
slot t as “slot t.”
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Fig. 1. (a) A priority queue with buffer size B. (b) A construction of an
optical priority queue in [13].

In this paper, we consider SDL constructions of optical
priority queues. A priority queue with buffer size B has one
arrival link, one departure link, one loss link, and one control
input (see Figure 1(a)). Each packet is associated with a unique
priority upon its arrival so that every packet in the queue has
a distinct priority and the relative priority order between any
two packets remains unchanged as long as they are in the
queue. When there is a departure request from the controller

and there are packets in the queue, the packet with the highest
priority is sent out from the queue through the departure link.
When there is a buffer overflow, the packet with the lowest
priority is dumped from the queue through the loss link. Since
packet arrival times and packet departure requests can be
arbitrary, and packet priority assignments can also be arbitrary
as long as the above-mentioned constraints on packet priorities
are satisfied, it is clear that priority queues are very general
and include FIFO queues and LIFO queues as special cases.
However, this also means that the design of optical priority
queues is expected to be more challenging than the other types
of optical queues.

The first construction of optical priority queues appeared
in [13], in which an optical priority queue with buffer size
O(M2) was constructed by using a feedback system consisting
of an optical (M +2)× (M +2) (bufferless) crossbar switch
and M fiber delay lines (see Figure 1(b)). A theoretical upper
bound 2M on the buffer size that can be achieved by using
such a feedback system was also given in [13]. The proof
in [13] is quite elaborate and a simpler proof was given in
[14]. The buffer size O(M2) achieved in [13] was improved to
O(M3) in [15], and was improved to O(M c) for any positive
integer c in [18]. The constructions in [13]–[15] use a sorting-
based routing policy, where the packets at the input links of
the crossbar switch are first sorted according to their priorities
and then routed to the departure link, the loss link, or the
fiber delay lines. Such a sorting-based approach only uses the
relative priority order among packets at the input links of the
crossbar switch, instead of directly using their priorities, to
design the routing policy performed by the crossbar switch,
and this is the main reason why the buffer sizes achieved in
these constructions are limited to polynomial in M .

To achieve a buffer size beyond polynomial in M , it was
proposed in [19] to replace each fiber delay line in Figure 1(b)
with a group of three parallel optical 4-to-1 FIFO multiplexers
(see Figure 2(a)), and use a simple priority-based routing
policy that directly uses the priorities of the packets at the input
links of the crossbar switch for the routing of packets. An n-
to-1 FIFO multiplexer (nFM) with buffer size B has n arrival
links, one departure link, and n−1 loss links (see Figure 2(b)),
where the packet with the earliest arrival time leaves from the
departure link whenever there are packets in the nFM, and the
packets with the latest arrival times are dumped through the
loss links whenever there is a buffer overflow at the nFM. At
each slot t, a packet p in the feedback system in Figure 2(a) is
associated with a unique positive integer τp(t), called the tag
of packet p at slot t, to indicate its priority level so that the
ith-highest-priority packet in the queue has a tag equal to i.
Specifically, if there are q(t− 1) packets stored in the buffers
of the 4FM’s at slot t − 1 and there are a(t) arrival packets
at slot t, then the q(t− 1) + a(t) packets in the queue at slot
t are assigned tags from 1 to q(t − 1) + a(t) in the order
of decreasing priority. Furthermore, each group of 4FM’s is
associated with a unique set of tags, say the ith group of 4FM’s
is associated with the set Ψi of tags for all i = 1, 2, . . . , 2ℓ−1.
At slot t, if a packet p at the input links of the crossbar switch
is not routed to the departure link or the loss link, then it has
to be stored in the buffers of the 4FM’s, and it is routed to
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Fig. 2. (a) The feedback system in [19]. (b) An n-to-1 FIFO multiplexer with
buffer size B.

the ith group of 4FM’s if τp(t) ∈ Ψi under the priority-based
routing policy in [19].

Two problems can arise in [19] as described below. (i) The
no-buffering problem: We assume that the feedback system in
Figure 2(a) is initially empty at slot t = 0. At slot t = 1,
suppose that there is an arrival packet, say packet p, and there
is no departure request. Then packet p has to be buffered in
the 4FM’s at slot t = 1. As τp(1) = 1 (note that packet p
is the only packet in the queue at slot t = 1) and Ψ1 = {1}
(according to the assignment of the sets Ψi’s in [19]), we
see that τp(1) ∈ Ψ1 and hence packet p is routed to the first
group of 4FM’s at slot t = 1 under the priority-based routing
policy in [19]. Since the 4FM to which packet p is routed is
empty when packet p arrives, packet p is immediately sent out
from that 4FM and thus it is not successfully buffered at slot
t = 1. This leads to the failure of the constructions in [19].
To fix such a no-buffering problem, in this paper we propose
to replace the optical 4FM’s in Figure 2(a) with optical 4-
to-1 FIFO multiplexers with delay one (see Figure 3(a) with
k = 2ℓ − 1 for some ℓ ≥ 2, m = 3, and n = 4). An optical
n-to-1 FIFO multiplexer with delay one (nFM1) and buffer
size B is defined as the concatenation of an optical nFM with
buffer size B − 1 and a fiber delay line with delay equal to
one, where the departure link of the nFM is connected to the
input link of the fiber delay line (see Figure 3(b)). As it takes
one slot for a packet to traverse through a fiber delay line
with delay equal to one, a packet admitted into an nFM1 is
buffered there for at least one slot. This solves the no-buffering
problem.
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Fig. 3. (a) A construction of an optical priority queue by using an optical
(kmn + 2) × (kmn + 2) (bufferless) crossbar switch and k groups of m
parallel optical n-to-1 FIFO multiplexers with delay one. (b) An n-to-1 FIFO
multiplexer with delay one and buffer size B.

(ii) Inefficient utilization of buffering capacity: Assume that
we have replaced the optical 4FM’s in Figure 2(a) with optical
4FM1’s so as to fix the no-buffering problem as mentioned
above in (i), and assume that the feedback system is initially
empty at slot t = 0. Consider the case that ℓ = 2 so that
B1 = B2 = B3 = 1, Ψ1 = {1}, Ψ2 = {2, 3}, and Ψ3 = {4}
according to the assignment of Bi’s and Ψi’s in [19]. At slot
t = 1, suppose that there is an arrival packet, say packet p1,
and there is no departure request. As already discussed in (i),
packet p1 is routed to the first 4FM1 in the first group of
4FM1’s at slot t = 1. As B1 = 1, packet p1 will be buffered
in that 4FM for one slot and then leave from the first group
of 4FM1’s and appear at input link 1 of the crossbar switch at
slot t = 2 (see Figure 4(a)). At slot t = 2, suppose that there is
another arrival packet, say packet p2, with priority lower than
packet p1 (see Figure 4(a)), and there is a departure request.
Then it is clear that τp1(2) = 1 and τp2(2) = 2, and hence at
slot t = 2 packet p1 is routed to the departure link (as it is the
highest-priority packet in the queue) and packet p2 is routed
to the second group of 4FM1’s (as τp2

(2) ∈ Ψ2) as shown
in Figure 4(b) under the priority-based routing policy in [19].
Since the 4FM1’s in the first group are empty at slot t = 2,
their buffers are not used at slot t = 2, and this is a waste
in the utilization of buffering capacity. In general, when there
is a departure request at slot t, the packet with tag one (i.e.,
the packet with the highest priority in the queue) is routed
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Fig. 4. An illustration of the inefficient utilization of buffering capacity in [19]. (a) At slot t = 2, packet p1 with τp1 (2) = 1 leaves from the first group of
4FM1’s and appears at input link 1 of the crossbar switch, and packet p2 with τp2 (2) = 2 ∈ Ψ2 arrives from the arrival link. (b) At slot t = 2, packet p1
is routed to the departure link and packet p2 is routed to the second group of 4FM1’s under the priority-based routing policy in [19]. We note that the input
links of each group of 4FM1’s are numbered from 0 to 11 and this will be used in the description of the round-robin routing policy (R3) in Section II-C.

to the departure link, and the other packets at the input links
of the crossbar switch have tags greater than one and hence
are routed to the groups of 4FM1’s other than the first group
(since Ψ1 = {1}). Therefore, the buffers in the first group are
not used at slot t.

A simple way to improve this situation is to focus on the
packets that have to be stored in the buffers of the 4FM1’s.
At each slot t, a packet p that has to be stored in the buffers
of the 4FM1’s is associated with a unique positive integer
τ̃p(t), called the buffering tag of packet p at slot t, so that the
ith-highest-priority packet among all of the packets that have
to be buffered in the 4FM1’s has a buffering tag equal to i.
Specifically, if there are q(t− 1) packets stored in the buffers
of the 4FM1’s at slot t− 1 and there are a(t) arrival packets,
d(t) departure packets, and ℓ(t) loss packets at slot t, then the
q(t− 1) + a(t)− d(t)− ℓ(t) packets that have to be buffered
in the 4FM1’s at slot t are assigned buffering tags from 1 to

q(t−1)+a(t)−d(t)−ℓ(t) in the order of decreasing priority.
Note that a packet with a smaller buffering tag has a higher
priority than a packet with a larger buffering tag. The ith group
of 4FM1’s is now associated with a set Ψi of buffering tags
for all i = 1, 2, . . . , 2ℓ−1. At slot t, a packet p with buffering
tag τ̃p(t) ∈ Ψi is routed to the ith group of 4FM1’s. Since
we number the buffering tags starting from 1, the packet with
buffering tag equal to 1 is always routed to the first group of
4FM1’s (as 1 ∈ Ψ1 = {1}) so that the buffers in the first
group of 4FM1’s are utilized. This improves the utilization of
buffering capacity. In the above example, we have τ̃p2

(2) = 1
(as packet p2 is the only packet that has to be buffered in the
4FM1’s at slot t = 2), and hence packet p2 is routed to the first
group of 4FM1’s at slot t = 2 (as τ̃p2

(2) = 1 ∈ Ψ1 = {1}).

In this paper, we not only fix the no-buffering problem (by
replacing the 4FM’s in Figure 2(a) with 4FM1’s) and improve
the utilization of buffering capacity over that in [19] (by using
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buffering tags, instead of tags, in the priority-based routing
policy), but also extend and generalize the construction in
[19] and obtain a much larger class of constructions of optical
priority queues. Specifically, we use the feedback system in
Figure 3(a) consisting of an optical (kmn+ 2)× (kmn+ 2)
(bufferless) crossbar switch and k groups of optical nFM1’s,
where the ith group has m parallel optical nFM1’s with the
same buffer size Bi (Bi ≥ 1) for i = 1, 2, . . . , k. We show
in Theorem 7 (see Section III) that the feedback system in
Figure 3(a) can be operated as an optical priority queue with
buffer size Uk =

∑k
i=1 |Ψi| under the priority-based routing

policy (R1)–(R3) (see Section II-C) if 1 ≤ s ≤ k−1, where s
is a parameter in the conditions (A1)–(A3) (see Section III),
m ≥ 1, and n,B1, B2, . . . , Bk, |Ψ1|, |Ψ2|, . . . , |Ψk| satisfy the
conditions (A1)–(A3). We note that the construction in [19] is
a special case of the constructions in this paper with s = 1,
k = 2ℓ− 1 for some ℓ ≥ 2, m = 3, n = 4, B1 = B2ℓ−1 = 1,
Bi = B2ℓ−i = 2i−2 for 2 ≤ i ≤ ℓ, and |Ψi| = |Ψ2ℓ−i| = 2i−1

for 1 ≤ i ≤ ℓ.
Our constructions are made possible by showing that the

highest-priority (resp., lowest-priority) packet is always avail-
able at the input links of the crossbar switch whenever there is
a departure request and there are packets in the queue (resp.,
whenever there is a buffer overflow) so that it can be routed
to the departure (resp., loss) link whenever necessary, and
by showing that there is no collision and there is no buffer
overflow at any nFM1 at any slot so that there is no internal
packet loss in the queue at any slot.

The rest of this paper is organized as follows. In Section II,
we give more details about priority queues and nFM1’s,
describe the priority-based routing policy performed by the
crossbar switch in Figure 3(a), and derive some basic prop-
erties on the buffering tags under our priority-based routing
policy. Then we show in Section III that the feedback system in
Figure 3(a) can be operated as an optical priority queue under
our priority-based routing policy. In Section IV, we perform
a complexity analysis for our constructions with maximum
buffer sizes and show that a buffer size of 2O(

√
αM) can be

achieved by using an optical (M + 2)× (M + 2) (bufferless)
crossbar switch and M fiber delay lines, where α is a constant
that depends on the parameters used in our constructions.
In Section V, we describe the router buffer sizing problem,
present our numerical results, and discuss some feasibility
issues. Finally, we conclude this paper in Section VI.

II. PRIORITIES QUEUES, NFM1’S, PRIORITY-BASED
ROUTING POLICY, AND BASIC PROPERTIES ON BUFFERING

TAGS

In this paper, we assume that every network element is
initially empty at slot t = 0. Recall that for the sake of
conciseness, we have abbreviated n-to-1 FIFO multiplexer
(resp., n-to-1 FIFO multiplexer with delay one) as nFM (resp.,
nFM1). We have also denoted τp(t) (resp., τ̃p(t)) as the tag
(resp. buffering tag) of a packet p in a priority queue at slot
t.

Since there can be at most one packet in a link at any slot,
we can characterize a link by its link state, say a link is in

state 1 (resp., 0) at slot t if there is a packet (resp., there is
no packet) in the link at slot t.

A. Priorities Queues

For a priority queue with buffer size B as shown in Fig-
ure 1(a), we denote a(t), d(t), and ℓ(t) as the link states of the
arrival link, the departure link, and the loss link, respectively,
at slot t. We denote c(t) = 1 (resp., c(t) = 0) if there is a
departure request (resp., there is no departure request) from the
controller at slot t. Let q(t) be the number of packets stored
in the buffer of the priority queue at slot t.

Then a priority queue with buffer size B is characterized by
the following five properties: (P1) Flow conservation: Packets
arriving from the arrival link are either stored in the buffer or
transmitted through the departure link or the loss link. Thus,
we have q(t) = q(t− 1) + a(t)− d(t)− ℓ(t). (P2) Nonidling:
There is a departure packet at slot t only when there is a
departure request from the controller and there are packets in
the queue at slot t. Thus, we have d(t) = 1 if c(t) = 1 and
q(t − 1) + a(t) > 0, and d(t) = 0 otherwise. (P3) Maximum
buffer usage: There is a loss packet at slot t only when there is
a buffer overflow at slot t. Thus, we have ℓ(t) = 1 if c(t) = 0,
q(t − 1) = B, and a(t) = 1, and ℓ(t) = 0 otherwise. (P4)
Priority departure: If there is a departure packet, say packet p,
at slot t, then packet p is the packet with the highest priority
in the queue at slot t, i.e., τp(t) = 1. (P5) Priority loss: If
there is a loss packet, say packet p, at slot t, then packet p is
the packet with the lowest priority in the queue at slot t, i.e.,
τp(t) = B + 1.

We note that the tag and the buffering tag of a packet
in a priority queue can change as time evolves due to the
arrivals and departures of packets with priorities higher than
that packet (packets with priorities lower than that packet have
no effect on the change of its tag or buffering tag). Specifically,
consider the scenario that the properties (P4) and (P5) are
satisfied at slot t and a packet p in the queue at slot t is not
the departure packet (if any) or the loss packet (if any) at slot
t so that it has to be buffered in the queue at slot t. Then it
is clear that the departure (resp., loss) packet (if any) at slot t
has priority higher (resp., lower) than packet p by (P4) (resp.,
by (P5)), and hence we have

τ̃p(t) = τp(t)− d(t). (1)

Now consider the scenario that the properties (P1), (P4),
and (P5) are satisfied at slot t− 1 and a packet p is buffered
in the queue at slot t − 1. Then it is clear that there is no
internal packet loss in the queue at slot t − 1 (by (P1)) and
hence we have

τp(t) = τp(t− 1)− d(t− 1) + ap(t), (2)

where ap(t) is the number of arrival packets at slot t with
priorities higher than packet p.

Furthermore, consider the scenario that the property (P1)
is satisfied at slot t − 1 and the properties (P4) and (P5) are
satisfied at slots t− 1 and t, and a packet p is buffered in the
queue at slot t− 1 and has to be buffered in the queue at slot
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t. Then we see from (1) and (2) (note that we have used (1)
twice) that

τ̃p(t) = τ̃p(t− 1)− d(t) + ap(t), (3)

where ap(t) is the number of arrival packets at slot t with
priorities higher than packet p.

B. n-to-1 FIFO Multiplexers and n-to-1 FIFO Multiplexers
with Delay One

An nFM with buffer size B is shown in Figure 2(b).
To break the tie among packets arriving at the same time,
we assume that the arrival links are prioritized so that the
priorities of the arrival links are decreasing in the link indices,
i.e., packets from arrival links with smaller link indices are
regarded as arriving earlier than those from arrival links with
larger link indices. We denote a′i(t) as the link state of arrival
link i at slot t for i = 1, 2, . . . , n, denote d′(t) as the link
state of the departure link at slot t, and denote ℓ′i(t) as the
link state of loss link i at slot t for i = 1, 2, . . . , n − 1. Let
a′(t) =

∑n
i=1 a

′
i(t) and ℓ′(t) =

∑n−1
i=1 ℓ′i(t) be the number

of packets arriving from the arrival links and the number of
packets dumped through the loss links, respectively, at slot t.
Let q′(t) be the number of packets buffered in the nFM at slot
t.

Then an nFM with buffer size B is characterized by
the following five properties: (M1) Flow conservation: This
property is the same as property (P1). Thus, we have q′(t) =
q′(t − 1) + a′(t) − d′(t) − ℓ′(t). (M2) Nonidling: There is a
departure packet at slot t whenever there are packets in the
queue at slot t. Thus, we have d′(t) = 1 if q′(t−1)+a′(t) > 0,
and d′(t) = 0 otherwise. (M3) Maximum buffer usage: There
is a loss packet at slot t only when there is a buffer overflow
at slot t. Thus, we have ℓ′(t) = q′(t − 1) + a′(t) − 1 − B
if q′(t − 1) + a′(t) − 1 > B, and ℓ′(t) = 0 otherwise. (M4)
FIFO departure: Packets depart in the FIFO order. (M5) FIFO
loss with prioritized loss links: If there are loss packets at
slot t, i.e., ℓ′(t) > 0, then the loss packets are the latest ℓ′(t)
arrival packets at slot t and they are dumped through loss links
1, 2, . . . , ℓ′(t) in the order of increasing arrival link indices.

An nFM1 with buffer size B is defined as the concatenation
of an optical nFM with buffer size B−1 and a fiber delay line
with delay equal to one as shown in Figure 3(b). We make the
following remark on nFM1’s that will be useful later in this
paper.

Remark 1 (i) From the properties (M2) and (M4), we can see
that a packet admitted into an nFM with buffer size B − 1 is
buffered there for at most B − 1 slots. Therefore, it is clear
from Figure 3(b) that a packet admitted into an nFM1 with
buffer size B is buffered there for at least one slot and at most
B slots. It follows that a packet admitted into an nFM1 with
buffer size B = 1 is buffered there for exactly one slot.

(ii) When there are packets buffered in an nFM1 with buffer
size B as shown in Figure 3(b), it is easy to see from the
property (M2) that one of those packets must be buffered in
the fiber delay line with delay one. Thus, the buffering capacity
of the fiber with delay one is fully utilized. As an nFM with

buffer size B−1 has the capability of buffering B−1 packets,
it then follows that the effective buffering capacity of such a
concatenation in Figure 3(b) is B.

C. The Priority-Based Routing Policy

As mentioned in Section I, each group of nFM1’s in
Figure 3(a) is associated with a unique set of buffering tags.
Specifically, the ith group of nFM1’s is associated with the
set Ψi of buffering tags for i = 1, 2, . . . , k as described
below. Let Uk be the targeted buffer size of the optical priority
queue in our construction. Partition the set Ψ = {1, 2, . . . , Uk}
of buffering tags into k pairwise disjoint nonempty subsets
Ψi = {Ui−1 + 1, Ui−1 + 2, . . . , Ui}, i = 1, 2, . . . , k, where

U0 = 0 < U1 < U2 < · · · < Uk. (4)

It is clear that |Ψi| = Ui − Ui−1 for i = 1, 2, . . . , k and
Ui =

∑i
j=1 |Ψj | for i = 1, 2, . . . , k. Let Li = Ui−1 + 1

so that we can write Ψi as Ψi = {Li, Li + 1, . . . , Ui} for
i = 1, 2, . . . , k. Note that L1 = U0+1 = 1 and we have from
(4) that Li ≤ Ui for i = 1, 2, . . . , k.

Then the crossbar switch in Figure 3(a) is operated accord-
ing to the following priority-based routing policy at all slots
t ≥ 1.

(R1) Departure packets: If there is a departure request
from the controller and there are packets in the queue at slot
t, i.e., c(t) = 1 and q(t−1)+a(t) > 0, then the highest-priority
packet (if any) among all of the packets from the arrival link
or the m output links of the first group of nFM1’s is routed
to the departure link at slot t. Otherwise, no packet is routed
to the departure link at slot t.

(R2) Loss packets: If there is a buffer overflow at slot t, i.e.,
c(t) = 0, q(t−1) = Uk, and a(t) = 1, then the lowest-priority
packet (if any) among all of the packets from the arrival link
or the m output links of the last group of nFM1’s is routed
to the loss link at slot t. Otherwise, no packet is routed to the
loss link at slot t.

(R3) Round-robin routing at the k groups of nFM1’s: A
packet p at the input links of the crossbar switch that has to be
buffered in the queue (i.e., it is not routed to the departure link
according to (R1) or the loss link according to (R2)) and has
τ̃p(t) ∈ Ψi is routed to the ith group of nFM1’s. Furthermore,
packets routed to a group of nFM1’s are distributed to the
nFM1’s in that group in a round-robin fashion so that load
balancing among the nFM1’s in that group can be achieved
and hence the buffering capacity of the nFM1’s can be fully
utilized. Specifically, the round-robin routing is described as
follows. Consider the ith group, where 1 ≤ i ≤ k. For ease of
presentation, we call arrival link ℓ of the jth nFM1 in the ith

group the ((ℓ− 1)m+ j − 1)th input link of the ith group for
j = 1, 2, . . . ,m and ℓ = 1, 2, . . . , n. As such, the inputs of the
ith group are numbered from 0 to mn−1 (see Figure 4 for an
illustration). Let ui(0) = 0. At slot t, if there are ri(t) packets
routed to the ith group, then they are routed to the (ui(t− 1)
mod mn)th, ((ui(t− 1) + 1) mod mn)th, . . ., ((ui(t− 1) +
ri(t)−1) mod mn)th input links of the ith group in the order
of increasing buffering tags, and we update ui(t) as ui(t) =
(ui(t−1)+ri(t)) mod mn. It is clear that ui(t) is the index
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of the input link of the ith group that will be firstly used by
the packets routed to the ith group at slot t.

Remark 2 (i) We will show in the proof of Theorem 7 that the
following four conditions are satisfied at all slots t ≥ 1 under
the priority-based routing policy (R1)–(R3): (C1) Highest-
priority packet availability condition: If there is a departure
request and there are packets in the queue at slot t, then the
packet with the highest priority in the queue at slot t is from
the arrival link or the m output links of the first group of
nFM1’s. (C2) Lowest-priority packet availability condition: If
there is a buffer overflow at slot t, then the packet with the
lowest priority in the queue at slot t is from the arrival link or
the m output links of the last group of nFM1’s. (C3) Collision-
free condition: There is at most one packet routed to any input
link of any nFM1 at slot t. (C4) No buffer overflow condition:
There is no buffer overflow at any nFM1 at slot t.

(ii) If the condition (C1) (resp., (C2)) is satisfied at slot t,
then we see from the routing policy (R1) (resp., (R2)) that the
properties (P2) and (P4) (resp., (P3) and (P5)) are satisfied
at slot t. If the conditions (C3) and (C4) are satisfied at slot
t, then there is no packet loss at any nFM1 so that there is
no internal packet loss in the feedback system in Figure 3(a)
at slot t, and hence the property (P1) is satisfied at slot t.
Therefore, if the conditions (C1)–(C4) are satisfied at slot t,
then the feedback system in Figure 3(a) can be operated as a
priority queue with buffer size Uk at slot t.

D. Basic Properties on Buffering Tags

In this subsection, we derive some basic properties on
buffering tags that will be used in the proof of our construc-
tions of optical priority queues in Section III.

We first derive two basic properties on the change of
buffering tags in a slot under our priority-based routing policy.
The first property says that the buffering tag of a packet can
only increase (resp., decrease) by at most one in a slot under
our priority-based routing policy, which is a direct result of (3)
and the fact that there is at most one arrival (resp., departure)
packet with priority higher than that packet in a slot.

Theorem 3 Assume that the feedback system in Figure 3(a)
is operated under the routing policy (R1)–(R3) at all slots, the
property (P1) is satisfied up to slot t − 1, and the priorities
(P4) and (P5) are satisfied up to slot t. Suppose that a packet
p is buffered in the feedback system at slot t − 1 and has to
be buffered in the feedback system at slot t. Then we have

−1 ≤ τ̃p(t)− τ̃p(t− 1) ≤ 1. (5)

The second property says that the difference between the
buffering tag of a lower-priority packet and the buffering tag of
a higher-priority packet cannot decrease and can only increase
by at most one in a slot under our priority-based routing policy,
which is a direct consequence of (3) and the fact that there is
at most one arrival packet with priority lower than the higher-
priority packet but higher than the lower-priority packet in a
slot.

Theorem 4 Assume that the feedback system in Figure 3(a)
is operated under the routing policy (R1)–(R3) at all slots, the
property (P1) is satisfied up to slot t−1, and the priorities (P4)
and (P5) are satisfied up to slot t. Suppose that two packets,
say packet p1 and packet p2, are buffered in the feedback
system at slot t − 1 and have to be buffered in the feedback
system at slot t, where packet p1 has higher priority than
packet p2, i.e., τ̃p1(t− 1) < τ̃p2(t− 1). Then we have

0 ≤ [τ̃p2(t)− τ̃p1(t)]− [τ̃p2(t− 1)− τ̃p1(t− 1)] ≤ 1. (6)

In the following, we derive two basic properties on the
buffering tags of packets buffered in or routed to each group of
nFM1’s under our priority-based routing policy. We first use
Theorem 3 to derive the range of the buffering tags of packets
buffered in each group of nFM1’s under our priority-based
routing policy.

Theorem 5 Assume that the feedback system in Figure 3(a)
is operated under the routing policy (R1)–(R3) at all slots, the
property (P1) is satisfied up to slot t − 1, and the priorities
(P4) and (P5) are satisfied up to slot t. Suppose that a packet
p is buffered in the ith group of nFM1’s at slot t for some
1 ≤ i ≤ k. Then we have

Li −Bi + 1 ≤ τ̃p(t) ≤ Ui +Bi − 1. (7)

Proof. Let t′ be the slot that packet p is routed to the ith

group of nFM1’s for the last time before or at slot t, say
packet p is routed to the jth nFM1 in the ith group at slot t′

for some 1 ≤ j ≤ m. Since packet p is buffered in the ith

group of nFM1’s at slot t, it is clear from the definition of t′

that packet p is admitted into the jth nFM1 in the ith group at
slot t′ and buffered there at slots t′, t′ + 1, . . . , t. As we also
know from Remark 1(i) that after packet p is admitted into
the the jth nFM1 in the ith group at slot t′, it can be buffered
there for at most Bi slots, we easily deduce that

t ≤ t′ +Bi − 1. (8)

Now write τ̃p(t) as

τ̃p(t) = τ̃p(t
′) +

t−t′∑
ℓ=1

(τ̃p(t
′ + ℓ)− τ̃p(t

′ + ℓ− 1)). (9)

It then follows from (9), τ̃p(t′) ∈ Ψi = {Li, Li + 1, . . . , Ui}
(according to the routing policy (R3)), Theorem 3, and t−t′ ≤
Bi − 1 in (8) that τ̃p(t) ≤ Ui + (t− t′) · 1 ≤ Ui +Bi − 1 and
τ̃p(t) ≥ Li − (t− t′) · 1 ≥ Li −Bi + 1.

Now we use Theorem 3 and Theorem 4 to derive an upper
bound on the difference between the buffering tags of two
packets that are buffered in or routed to each group of nFM1’s,
which in turn gives an upper bound on the number of packets
buffered in or routed to each group of nFM1’s under our
priority-based routing policy.

Theorem 6 Assume that the feedback system in Figure 3(a)
is operated under the routing policy (R1)–(R3) at all slots, the
property (P1) is satisfied up to slot t−1, and the priorities (P4)
and (P5) are satisfied up to slot t. Suppose that two packets,
say packet p1 and packet p2, are buffered in or routed to the
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ith group of nFM1’s at slot t for some 1 ≤ i ≤ k. Then we
have

|τ̃p1
(t)− τ̃p2

(t)| ≤ |Ψi|+Bi − 2. (10)

Therefore, there are at most |Ψi|+Bi − 1 packets buffered in
or routed to the ith group of nFM1’s at slot t.

Proof. Let t1 (resp., t2) be the slot that packet p1 (resp.,
packet p2) is routed to the ith group of nFM1’s for the last
time before or at slot t. Then we have τ̃p1(t1), τ̃p2(t2) ∈ Ψi =
{Li, Li+1, . . . , Ui} (according to the routing policy (R3)), and
it follows that

|τ̃p1(t1)− τ̃p2(t2)| ≤ Ui − Li = |Ψi| − 1. (11)

Assume without loss of generality that t1 ≤ t2. Since t1 ≤ t,
we consider the two cases t1 = t and t1 < t separately.

Case 1: t1 = t. In this case, we see from t = t1 ≤ t2 ≤ t
that t2 = t. Thus, we have from (11) and Bi ≥ 1 that

|τ̃p1
(t)− τ̃p2

(t)| = |τ̃p1
(t1)− τ̃p2

(t2)| ≤ |Ψi| − 1 ≤ |Ψi|+Bi − 2.

Case 2: t1 < t. In this case, packet p1 is not routed to the
ith group of nFM1’s at slot t (according to the definition of
t1) and hence it must be buffered in the ith group of nFM1’s
at slot t. It then follows from the argument leading to (8) that
t ≤ t1 +Bi − 1. Therefore, we have

|τ̃p1
(t)− τ̃p2

(t)|

=

∣∣∣∣τ̃p1
(t2)− τ̃p2

(t2)

+

t−t2∑
ℓ=1

[
(τ̃p1

(t2 + ℓ)− τ̃p2
(t2 + ℓ))

−(τ̃p1
(t2 + ℓ− 1)− τ̃p2

(t2 + ℓ− 1))
]∣∣∣∣

≤ |τ̃p1
(t2)− τ̃p2

(t2)|+ (t− t2) · 1

=

∣∣∣∣τ̃p1
(t1)− τ̃p2

(t2)

+

t2−t1∑
ℓ=1

(τ̃p1
(t1 + ℓ)− τ̃p1

(t1 + ℓ− 1))

∣∣∣∣+ t− t2

≤ |Ψi| − 1 + (t2 − t1) · 1 + t− t2

≤ |Ψi|+Bi − 2,

where the first inequality follows from Theorem 4, the second
inequality follows from (11) and Theorem 3, and the third
inequality follows from t ≤ t1 +Bi − 1.

III. CONSTRUCTIONS OF OPTICAL PRIORITY QUEUES

In this section, we will use the basic properties on buffering
tags obtained in Section II-D to show that the feedback system
in Figure 3(a) can be operated as an optical priority queue
with buffer size Uk under the routing policy (R1)–(R3) if 1 ≤
s ≤ k−1, m ≥ 1, and n,B1, B2, . . . , Bk, |Ψ1|, |Ψ2|, . . . , |Ψk|
satisfy the following conditions (A1)–(A3):

(A1) n ≥ min{2s+ 1, k}+ 1.
(A2) B1 = Bk = 1, Bi ≥ 1 for i = 2, 3, . . . , k − 1,

Bi ≤

{
Ui−1, if 2 ≤ i ≤ s+ 1,

Ui−1 − Ui−s−1, if s+ 2 ≤ i ≤ k,

and

Bi ≤

{
Ui+s − Ui, if 1 ≤ i ≤ k − s− 1,

Uk − Ui, if k − s ≤ i ≤ k − 1.

(Recall from Section II-C that Ui =
∑i

j=1 |Ψj | for i =
1, 2, . . . , k.)

(A3) 1 ≤ |Ψi| ≤ (m− 1)Bi + 1 for i = 1, 2, . . . , k.

Theorem 7 Assume that the feedback system in Figure 3(a)
is operated under the routing policy (R1)–(R3) at all
slots. Suppose that 1 ≤ s ≤ k − 1, m ≥ 1, and
n,B1, B2, . . . , Bk, |Ψ1|, |Ψ2|, . . . , |Ψk| satisfy the conditions
(A1)–(A3). Then the feedback system in Figure 3(a) can be
operated as an optical priority queue with buffer size Uk at
all slots t ≥ 1.

Remark 8 It is easy to check that when s = 1, k = 2ℓ−1 for
some ℓ ≥ 2, and m = 3, the choice n = 4, B1 = B2ℓ−1 = 1,
Bi = B2ℓ−i = 2i−2 for 2 ≤ i ≤ ℓ, and |Ψi| = |Ψ2ℓ−i| = 2i−1

for 1 ≤ i ≤ ℓ given in [19] satisfies the conditions (A1)–(A3).
Therefore, the construction in [19] indeed is a special case of
our constructions in Theorem 7 as mentioned in Section I.

Before we present the proof of Theorem 7, we give the
intuitive idea behind our constructions. Since the design of the
delays of the fiber delay lines in the SDL constructions of the
nFM1’s adopted in this paper (see Section IV) is determined
by the buffer sizes B1, B2, . . . , Bk of the nFM1’s, and the
design of the routing policy performed by the optical crossbar
switches is determined by the sets Ψ1,Ψ2, . . . ,Ψk of buffering
tags under our priority-based routing policy, it is clear that the
design of the buffer sizes B1, B2, . . . , Bk and the design of
the sets Ψ1,Ψ2, . . . ,Ψk of buffering tags are closely related
and highly coupled as mentioned in Section I.

The idea behind the conditions (A1)–(A3) in our construc-
tions can be roughly described as follows (the details are given
in the proof of Theorem 7):

(i) The condition (A2) says that Bi ≤
∑i−1

j=1 |Ψj | for 2 ≤
i ≤ s + 1, Bi ≤

∑i−1
j=i−s |Ψj | for s + 2 ≤ i ≤ k, Bi ≤∑i+s

j=i+1 |Ψj | for 1 ≤ i ≤ k − s − 1, and Bi ≤
∑k

j=i+1 |Ψj |
for k − s ≤ i ≤ k − 1, namely, Bi is no greater than the sum
of the |Ψj |’s of at most s of its neighboring groups. Note that
a packet p may be buffered in an nFM1 in the ith group for
up to Bi slots (by Remark 1(i)), and its tag can change as
time evolves. If Bi is too large, i.e., greater than such a sum,
then packet p may still be buffered in the ith group when its
tag decreases to 1 (resp., increases to Uk + 1) and there is a
departure request (resp., there is a buffer overflow). Therefore,
packet p cannot be routed to the departure (resp. loss) link so
that we cannot successfully construct an optical priority queue
in such a case. In the proof of Theorem 7, we show that such
a situation cannot happen and the conditions (C1) and (C2)
can be satisfied if the condition (A2) is satisfied.

(ii) Since a packet p may be buffered in an nFM1 in the
ith group for up to Bi slots, its buffering tag can change by
at most Bi when it leaves from the ith group of nFM1’s (by
Theorem 3). As we know from the condition (A2) that Bi
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is no greater than the sum of the |Ψj |’s of at most s of its
neighboring groups, the buffering tag of packet p can only
belong to Ψj for max{i − s, 1} ≤ j ≤ min{i + s, k} when
packet p leaves from the ith group of nFM1’s. Thus, when
packet p leaves from the ith group of nFM1’s, it can only be
routed to the ith group itself or at most 2s of its neighboring
groups. As a result, the packets routed to a group of nFM1’s
can only come from the arrival link, or the output links of that
group itself or at most 2s of its neighboring groups, and this
limits the number of packets that can be routed to that group.
The condition (A1) then guarantees that n is large enough
so that there are enough input links in any group of nFM1’s
to accommodate the packets routed to that group. Thus, the
collision-free condition (C3) can be satisfied if the conditions
(A1) and (A2) are satisfied.

(iii) Finally, the condition (A3) says that |Ψi| is at most
(m− 1)Bi+1. If |Ψi| is greater than (m− 1)Bi+1, then we
see from Theorem 6 that there can be more than mBi packets
buffered in or routed to the ith group of nFM1’s. Therefore,
there are more than Bi packets buffered in or routed to some
nFM1 in the ith group, so that there is a buffer overflow at that
nFM1. In the proof of Theorem 7, we show that the no buffer
overflow condition (C4) can be satisfied if the condition (A3)
is satisfied.
Proof. (Proof of Theorem 7) We will prove this theorem
by induction on slot t. Recall that we have assumed that the
feedback system in Figure 3(a) is initially empty at slot t = 0
and hence we have q(0) = 0. First consider slot t = 1. As
q(0) = 0, it is clear that there are a(1) packets in the queue at
slot t = 1 and they are the arrival packets from the arrival link.
Thus, the conditions (C1) and (C2) are trivially satisfied at slot
t = 1. As a(1) ≤ 1, it is clear that there is at most one packet
routed to any nFM1 at slot t = 1. Thus, the conditions (C3)
and (C4) are also satisfied at slot t = 1. Therefore, it follows
from Remark 2(ii) that the feedback system in Figure 3(a) can
be operated as an optical priority queue with buffer size Uk

at slot t = 1.
Now assume as the induction hypothesis that the feedback

system in Figure 3(a) can be operated as an optical priority
queue with buffer size Uk up to slot t− 1, i.e., the properties
(P1)–(P5) (with B = Uk) are satisfied up to slot t − 1, for
some t − 1 ≥ 1. Therefore, if a packet p is buffered in the
queue at slot t− 1, then we have from (2) and (1) that

τp(t) = τp(t− 1)− d(t− 1) + ap(t) = τ̃p(t− 1) + ap(t), (12)

where ap(t) is the number of arrival packets at slot t with
priorities higher than packet p.

In the following, we will show that the conditions (C1)–
(C4) are satisfied at slot t. It then follows from Remark 2(ii)
that the feedback system in Figure 3(a) can be operated as an
optical priority queue with buffer size Uk at slot t, and the
induction is completed.

(i) The highest-priority packet availability condition (C1)
is satisfied at slot t. Suppose that there is a departure request
from the controller and there are packets in the queue at slot t,
i.e., c(t) = 1 and q(t− 1)+a(t) > 0. We will use Theorem 5
and (A2) to show that the packet with the highest priority in
the queue at slot t is from the arrival link or the m output

links of the first group of nFM1’s so that the condition (C1)
is satisfied at slot t.

Let packet p be the packet with the highest priority in the
queue at slot t, i.e., τp(t) = 1. If packet p is an arrival packet
at slot t, then we are done. So assume that packet p is not an
arrival packet at slot t. Then packet p must be stored in the
buffer of the queue at slot t− 1. Let ap(t) be the number of
arrival packets at slot t with priorities higher than packet p.
Then it is clear from τ̃p(t− 1) ≥ 1 and τ̃p(t− 1) ≤ τp(t) = 1
(by using ap(t) ≥ 0 in (12)) that

τ̃p(t− 1) = 1. (13)

From B1 = 1 in (A2), L1 = 1, and U1 ≥ L1, we have

L1 −B1 + 1 = L1 = 1

and U1 +B1 − 1 = U1 ≥ L1 = 1. (14)

From Li = Ui−1 + 1, (A2), the monotonicity of the Ui’s in
(4), and U0 = 0, we also have

Li −Bi + 1

= (Ui−1 + 1)−Bi + 1

≥

{
2, if 2 ≤ i ≤ s+ 1,

Ui−s−1 + 2 > U0 + 2 = 2, if s+ 2 ≤ i ≤ k.
(15)

Therefore, we see from Theorem 5 (for slot t − 1) and
(13)–(15) that packet p must be buffered in the first group of
nFM1’s at slot t− 1. As B1 = 1, it follows from Remark 1(i)
that packet p is buffered there for exactly one slot and then
leaves from the first group of nFM1’s at slot t.

(ii) The lowest-priority packet availability condition (C2) is
satisfied at slot t. Suppose that there is a buffer overflow at
slot t, i.e., c(t) = 0, q(t−1) = Uk, and a(t) = 1. We will use
Theorem 5 and (A2) to show that the packet with the lowest
priority in the queue at slot t is from the arrival link or the m
output links of the last group of nFM1’s so that the condition
(C2) is satisfied at slot t.

Let packet p be the packet with the lowest priority in the
queue at slot t, i.e., τp(t) = Uk + 1. If packet p is an arrival
packet at slot t, then we are done. So assume that packet p is
not an arrival packet at slot t. Then packet p must be stored in
the buffer of the queue at slot t− 1. Let ap(t) be the number
of arrival packets at slot t with priorities higher than packet
p. Then it is clear from τ̃p(t − 1) ≤ Uk (from the induction
hypothesis we know that there are at most Uk packets buffered
in the queue at slot t− 1) and τ̃p(t− 1) ≥ τp(t)− 1 = Uk (by
using ap(t) ≤ 1 in (12)) that

τ̃p(t− 1) = Uk. (16)

From Bk = 1 in (A2) and Lk ≤ Uk, we have

Lk −Bk + 1 = Lk ≤ Uk and Uk +Bk − 1 = Uk. (17)

From (A2) and the monotonicity of the Ui’s in (4), we also
have

Ui +Bi − 1

≤

{
Ui+s − 1 < Uk − 1, if 1 ≤ i ≤ k − s− 1,

Uk − 1, if k − s ≤ i ≤ k − 1.
(18)
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Therefore, we see from Theorem 5 (for slot t−1) and (16)–
(18) that packet p must be buffered in the last group, i.e., the
kth group, of nFM1’s at slot t−1. As Bk = 1, it follows from
Remark 1(i) that packet p is buffered there for exactly one slot
and then leaves from the last group of nFM1’s at slot t.

(iii) The collision-free condition (C3) is satisfied at slot t.
Since we have already shown in (i) and (ii) above that the
conditions (C1) and (C2) are satisfied at slot t, we see from
Remark 2(ii) that the properties (P4) and (P5) are satisfied
at slot t. Thus, we now know from the induction hypothesis
that the property (P1) is satisfied up to slot t − 1, and the
priorities (P4) and (P5) are satisfied up to slot t. We will then
use Theorem 3, Theorem 5, and (A2) to show that there are
at most m ·min{2s + 1, k} + 1 packets routed to any group
of nFM1’s at slot t. Note that there are mn input links at
any group of nFM1’s and we have from (A1) that mn ≥
m(min{2s + 1, k} + 1) ≥ m ·min{2s + 1, k} + 1. As such,
it follows from the round-robin routing policy (R3) that there
is at most one packet routed to any input link of any nFM1
at slot t. Therefore, the condition (C3) is satisfied at slot t.

It remains to show that there are at most m·min{2s+1, k}+
1 packets routed to any group of nFM1’s at slot t. Consider
a packet, say packet p, that is buffered in the ith group of
nFM1’s at slot t− 1, leaves from the ith group of nFM1’s at
slot t, and has to be stored in the buffer of the queue at slot
t, where 1 ≤ i ≤ k. If s+ 2 ≤ i ≤ k, then we have

τ̃p(t)− Li−s ≥ (τ̃p(t− 1)− 1)− Li−s ≥ (Li −Bi)− Li−s

= (Ui−1 + 1−Bi)− (Ui−s−1 + 1) ≥ 0, (19)

where the first inequality follows from Theorem 3, the second
inequality follows from Theorem 5, and the third inequality
follows from (A2). Similarly, if 1 ≤ i ≤ k − s − 1, then we
also have from Theorem 3, Theorem 5, and (A2) that

τ̃p(t)− Ui+s ≤ (τ̃p(t− 1) + 1)− Ui+s ≤ (Ui +Bi)− Ui+s ≤ 0. (20)

Thus, we see from (19) and (20) that τ̃p(t) ∈ Ψj for some
max{i− s, 1} ≤ j ≤ min{i+ s, k}. It then follows from the
routing policy (R3) that packet p can only be routed to the jth

group for some max{i− s, 1} ≤ j ≤ min{i+ s, k}.
As a result, we can see that the packets routed to the ith

group of nFM1’s at slot t can only come from the arrival
link or the output links of the jth group for some max{i −
s, 1} ≤ j ≤ min{i+ s, k}. In other words, the packets routed
to any group of nFM1’s can only come from the arrival link
or the output links of at most min{2s + 1, k} of groups. As
each group has m nFM1’s, we conclude that there are at most
m ·min{2s+1, k}+1 packets routed to any group of nFM1’s
at slot t.

(iv) The no buffer overflow condition (C4) is satisfied at slot
t. We will use Theorem 6 and (A3) to show that there is no
buffer overflow at any nFM1 at slot t. Therefore, the condition
(C4) is satisfied at slot t.

Consider the ith group of nFM1’s, where 1 ≤ i ≤ k. Let
q′i,j(t

′) (resp., a′i,j(t
′)) be the number of packets buffered in

(resp., the number of packets routed to) the jth nFM1 in the ith

group at slot t′ for j = 1, 2, . . . ,m and t′ = 1, 2, . . .. Consider
the jth nFM1 in the ith group, where 1 ≤ j ≤ m. As we know

from Remark 1(ii) that there is always a packet buffered in the
fiber with delay one in Figure 3(b) (with B = Bi) whenever
there are packets buffered in the jth nFM1, it follows that
among the q′i,j(t− 1) packets buffered in the jth nFM1 at slot
t−1, there are min{q′i,j(t−1), 1} of them departing from the
jth nFM1 at slot t and the rest of the (q′i,j(t−1)−1)+ packets
remain buffered there at slot t, where x+ = max{x, 0}. Thus,
the number of packets buffered in or routed to the jth nFM1
at slot t is given by (q′i,j(t−1)−1)++a′i,j(t). Therefore, we
have from Theorem 6 and (A3) that

m∑
j=1

((q′i,j(t− 1)− 1)+ + a′i,j(t))

≤ |Ψi|+Bi − 1 ≤ mBi. (21)

Since the m nFM1’s in the ith group are evenly loaded
(according to the round-robin routing policy (R3)) and evenly
served (according to Remark 1(ii)), and there is no buffer
overflow at any nFM1 up to slot t − 1 (according to the
induction hypothesis), it is a direct result of the join-the-
shortest-queue and serve-the-longest-queue policy in queueing
theory that the virtual queue lengths (q′i,j(t−1)−1)++a′i,j(t),
j = 1, 2, . . . ,m, of the m nFM1’s in the ith group differ by at
most one (this fact can also be easily proved by induction on
slot t as in the proof of Lemma 11 in [19]). As such, we deduce
from (21) that (q′i,j(t−1)−1)++a′i,j(t) ≤ ⌈(mBi)/m⌉ = Bi

for j = 1, 2, . . . ,m. In other words, there are at most Bi

packets buffered in or routed to the jth nFM1 at slot t for
j = 1, 2, . . . ,m. Therefore, there is no buffer overflow at the
jth nFM1 in the ith group at slot t for all j = 1, 2, . . . ,m.

IV. COMPLEXITY ANALYSIS FOR CONSTRUCTIONS WITH
MAXIMUM BUFFER SIZES

1

n-1 n-1

1

n n

2(n-1) 2(n-1)
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Fig. 5. A construction of a self-routing optical n-to-1 FIFO multiplexer with
buffer size nℓ − 1 by using an optical ((n − 1)ℓ + n) × ((n − 1)ℓ + n)
(bufferless) crossbar switch and (n− 1)ℓ fiber delay lines.
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In our constructions of optical priority queues in Figure 3(a),
we have used optical nFM1’s. Recall that an optical nFM1 with
buffer size B is a concatenation of an optical nFM with buffer
size B − 1 and a fiber delay line with delay equal to one as
shown in Figure 3(b). It was shown in [4, Figure 3] and [19,
Lemma 2] that a self-routing optical nFM with buffer size nℓ−
1 can be constructed by using a feedback system consisting of
an optical ((n−1)ℓ+n)× ((n−1)ℓ+n) (bufferless) crossbar
switch and (n− 1)ℓ fiber delay lines (see Figure 5). As such,
an optical nFM with buffer size B − 1 can be constructed by
using the feedback system in Figure 5 with ℓ = ⌈logn B⌉. It
then follows that an optical nFM1 with buffer size B can be
constructed by using an optical ((n− 1)⌈logn B⌉+ n+ 1)×
((n − 1)⌈logn B⌉ + n + 1) (bufferless) crossbar switch and
(n− 1)⌈logn B⌉+ 1 fiber delay lines.

Suppose 1 ≤ s ≤ k − 1 and m ≥ 1. We see from
Theorem 7 and the argument in the above paragraph that if
n,B1, B2, . . . , Bk, |Ψ1|, |Ψ2|, . . . , |Ψk| satisfy the conditions
(A1)–(A3), then an optical priority queue with buffer size
Uk =

∑k
i=1 |Ψi| can be constructed by using an optical

(M + 2)× (M + 2) (bufferless) crossbar switch and M fiber
delay lines, where M = m

∑k
i=1((n− 1)⌈logn Bi⌉+ n+ 1).

Apparently, the construction complexity of such a construction
is increasing with n (as the switch size M+2 is increasing with
n). To achieve minimum construction complexity, we have to
choose n as small as possible, and it is clear from (A1) that
we should choose n = min{2s+ 1, k}+ 1.

Furthermore, when the achieved buffer size is used as the
performance measure of a construction, we have to choose
|Ψi| as large as possible for i = 1, 2, . . . , k to maximize the
achieved buffer size Uk =

∑k
i=1 |Ψi| in our construction.

From (A3), it is clear that we should choose |Ψi| = (m −
1)Bi + 1 for i = 1, 2, . . . , k. If m = 1, then |Ψi| = 1 for
i = 1, 2, . . . , k, and hence we have Uk = k. In this case,
we should choose Bi = 1 for i = 1, 2, . . . , k (as there is at
most |Ψi| = 1 packet routed to the ith group of nFM1’s at
any slot according to the routing policy (R3)), and hence we
have M = k(n+ 1). Clearly this is not an interesting case as
Uk = M/(n+1) grows only linearly with M . So we assume
that m ≥ 2 in the rest of this paper.

For m ≥ 2, the choice |Ψi| = (m− 1)Bi + 1 can be made
as large as possible by choosing Bi as large as possible for
i = 1, 2, . . . , k. From (A2), we can see that we should make
the following choice:

(A2∗) If s+ 1 ≤ k ≤ 2s+ 2, then

Bi = Bk−i+1

=

{
1, if i = 1,∑i−1

j=1((m− 1)Bj + 1), if 2 ≤ i ≤ ⌈k/2⌉.

On the other hand, if k ≥ 2s+ 3, then

Bi = Bk−i+1

=


1, if i = 1,∑i−1

j=1((m− 1)Bj + 1), if 2 ≤ i ≤ s+ 1,∑i−1
j=i−s((m− 1)Bj + 1), if s+ 2 ≤ i ≤ ⌈k/2⌉.

We summarize the above findings in the following theorem.

Theorem 9 Suppose 1 ≤ s ≤ k − 1 and m ≥ 2. Then an
optical priority queue with buffer size Uk can be constructed
by using a feedback system consisting of an optical (M+2)×
(M +2) (bufferless) crossbar switch and M fiber delay lines,
where

Uk =

k∑
i=1

((m− 1)Bi + 1), (22)

M = m

k∑
i=1

((n− 1)⌈logn Bi⌉+ n+ 1), (23)

in which n = min{2s + 1, k} + 1 and B1, B2, . . . , Bk are
given by (A2∗).

To express the buffer size Uk (given by (22)) in terms of M
(given by (23)), we need the following results on the buffer
sizes B1, B2, . . . , Bk given by (A2∗).

Theorem 10 Suppose that 1 ≤ s ≤ k − 1, m ≥ 2, and
B1, B2, . . . , Bk are given by (A2∗).

(i) If s = 1, then we have

Bi = Bk−i+1

= =

i−1∑
j=0

(m− 1)j

=

{
i, if m = 2 and 1 ≤ i ≤ ⌈k/2⌉,
(m−1)i−1

m−2 , if m ≥ 3 and 1 ≤ i ≤ ⌈k/2⌉.
(24)

(ii) If s ≥ 2 and s+ 1 ≤ k ≤ 2s+ 2, then we have

Bi = Bk−i+1

= =

{
1, if i = 1,

mi−1 + mi−2−1
m−1 , if 2 ≤ i ≤ ⌈k/2⌉.

(25)

(iii) If s ≥ 2 and k ≥ 2s+ 3, then we have

Bi = Bk−i+1

= =

s∑
j=1

αjλ
i
j −

s

s(m− 1)− 1
for 1 ≤ i ≤ ⌈k/2⌉, (26)

where λ1, λ2, . . . , λs are the roots of the characteristic poly-
nomial p(z) = zs −

∑s−1
j=0(m − 1)zj associated with the

sth-order nonhomogeneous linear difference equation with
constant coefficients given by Bi =

∑i−1
j=i−s((m− 1)Bj + 1)

for s + 1 ≤ i ≤ ⌈k/2⌉, and α1, α2, . . . , αs can be obtained
by solving the s equations B1 = 1 and Bi = mi−1+ mi−2−1

m−1 ,
i = 2, 3, . . . , s.

We need the following two lemmas (whose proofs are given
in Appendix A and Appendix B, respectively) for the proof of
Theorem 10.

Lemma 11 Suppose that m ≥ 2 and assume that x1 = 1 and
xi =

∑i−1
j=1((m− 1)xj + 1) for i ≥ 2.

(i) xi = mxi−1 + 1 for i ≥ 3.
(ii) xi = mi−1 + mi−2−1

m−1 for i ≥ 2.
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Lemma 12 Suppose that s ≥ 2 and m ≥ 2, and suppose that
p(z) is a polynomial in the indeterminate z given by p(z) =
zs −

∑s−1
j=0(m− 1)zj .

(i) p(z) has s complex roots and they are all distinct.
(ii) If s is odd, then p(z) has one positive root and s − 1

nonreal roots. On the other hand, if s is even, then p(z) has
one positive root, one negative root, and s− 2 nonreal roots.

(iii) The positive root, say λ+, of p(z) lies in the open
interval (m− 1/(m− 1)s−1,m− (m− 1)/ms), and λ+ ≈ m
for sufficiently large s or m. The roots of p(z) other than λ+

lie in the annulus {z ∈ C : λ+/(λ++1) ≤ |z| ≤ λ+−m+1}.
Therefore, λ+ is the root of p(z) of the largest magnitude.

Proof. (Proof of Theorem 10) As we have from (A2∗) that
Bi = Bk−i+1 for 1 ≤ i ≤ ⌈k/2⌉, it suffices to prove the
theorem for Bi for 1 ≤ i ≤ ⌈k/2⌉.

(i) Suppose s = 1. Then we have k ≥ s + 1 = 2. First
consider the case that k = 2. In this case, we have from (A2∗)
that B1 = B2 = 1 and hence (24) holds.

Now consider the case that k ≥ 3. We will prove by
induction on i that Bi =

∑i−1
j=0(m − 1)j for 1 ≤ i ≤ ⌈k/2⌉.

It is clear from (A2∗) that B1 = 1. Assume as the induction
hypothesis that Bi−1 =

∑i−2
j=0(m− 1)j for some 1 ≤ i− 1 ≤

⌈k/2⌉ − 1. Then we have from (A2∗) (note that s = 1 in this
case) and the induction hypothesis that

Bi = (m− 1)Bi−1 + 1

= (m− 1)

i−2∑
j=0

(m− 1)j + 1

=

i−1∑
j=0

(m− 1)j .

(ii) Suppose s ≥ 2 and s+ 1 ≤ k ≤ 2s+ 2. Then we have
from (A2∗) that B1 = 1 and Bi =

∑i−1
j=1((m − 1)Bj + 1)

for 2 ≤ i ≤ ⌈k/2⌉, and hence (25) follows immediately from
Lemma 11(ii).

(iii) Suppose s ≥ 2 and k ≥ 2s + 3. Then we have from
(A2∗) that B1 = 1 and Bi =

∑i−1
j=1((m − 1)Bj + 1) for

2 ≤ i ≤ s, and hence it follows from Lemma 11(ii) that
Bi = mi−1 + mi−2−1

m−1 for 2 ≤ i ≤ s.
From (A2∗), we also have the sth-order nonhomogeneous

linear difference equation with constant coefficients given by
Bi =

∑i−1
j=i−s((m − 1)Bj + 1) for s + 2 ≤ i ≤ ⌈k/2⌉. The

characteristic polynomial p(z) associated with this difference
equation is given by p(z) = zs−

∑s−1
j=0(m−1)zj . As we know

from Lemma 12(i) that p(z) has s roots, say λ1, λ2, . . . , λs,
and they are all distinct, it then follows from well-established
results in the theory of difference equations [28, Chapter 2]
that Bi =

∑s
j=1 αjλ

i
j + α0 for 2 ≤ i ≤ ⌈k/2⌉, where α0 =

− s
s(m−1)−1 is a particular solution to this difference equation,

and α1, α2, . . . αs can be obtained by solving the s equations
Bi = mi−1 + mi−2−1

m−1 , i = 2, 3, . . . , s+ 1.
In the following theorem (whose proof is given in Ap-

pendix C), we use the results in Theorem 10 to express the
buffer size Uk (given by (22)) in terms of M (given by (23)).

Theorem 13 Suppose that 1 ≤ s ≤ k−1, m ≥ 2, Uk is given
by (22), and M is given by (23).

(i) If k = 2, then we have Uk = M/4.
(ii) If s = 1, k ≥ 3, and m = 2, then we have M/7 ≤

Uk ≤ (M/13)2.
(iii) If s = 1, k ≥ 3, and m ≥ 3, then we have

2
√

2M log2 (m−1)/(3m)−6 log2 (m−1)

≤ Uk ≤ 2
√

2M log2 (m−1)/(3m)+log2(8(m−1)). (27)

Therefore, we have Uk = 2O(
√

2M log2 (m−1)/(3m)) in this
case.

(iv) If s ≥ 2, s+ 1 ≤ k ≤ 2s, and m ≥ 2, then we have

2
√

M log2(k+1) log2 m/(km)−4 log2(k+1)

≤ Uk ≤ 2
√

M log2(k+1) log2 m/(km)+log2(3m). (28)

Therefore, we have Uk = 2O(
√

M log2(k+1) log2 m/(km)) in this
case.

(v) If s ≥ 2, k ≥ 2s+1, m ≥ 2, and if we approximate Bi

and Bk−i+1 by Bi = Bk−i+1 ≈ α+m
i for 1 ≤ i ≤ ⌈k/2⌉,

where α+ is the coefficient of the term λi
+ in (26) with λ+

being the positive root of the characteristic polynomial p(z)
in Theorem 10(iii), then we have

Uk ≈ 2
√

M log2 (2s+2) log2 m/((2s+1)m)+log2(α+m). (29)

Therefore, we have Uk ≈ 2O(
√

M log2 (2s+2) log2 m/((2s+1)m))

in this case.

Remark 14 (i) The reason for the approximation Bi =
Bk−i+1 ≈ α+m

i for 1 ≤ i ≤ ⌈k/2⌉ in Theorem 13(v) is as
follows. In this case, the roots λ1, λ2, . . . , λs of the polynomial
p(z) and the coefficients α1, α2, . . . , αs in the expression
for B1, B2, . . . , Bk in (26) cannot be easily expressed in
terms of s, k, and m. However, for this case we know from
Lemma 12(iii) that λ+ > m−1/(m−1)s−1 ≥ 1 and any root
λ of p(z) other than λ+ has magnitude |λ| ≤ λ+ −m+ 1 <
1 − (m − 1)/ms < 1. Thus, for sufficiently large s and
m, we can approximate Bi and Bk−i+1 by only keeping the
term α+λ

i
+ in (26). For sufficiently large s and m, we also

know from Lemma 12(iii) that λ+ ≈ m and hence we can
approximate Bi and Bk−i+1 by Bi = Bk−i+1 ≈ α+m

i.
(ii) From Theorem 13, we see that we can achieve a buffer

size Uk that goes beyond polynomial in M when s = 1, k ≥ 3,
and m ≥ 3, or when s ≥ 2, k ≥ 3, and m ≥ 2. In these cases,
we can achieve a buffer size of Uk = 2O(

√
αM), where α is a

constant that depends on s, k, and m.
(iii) For s = 1 and k ≥ 3, we see from Theorem 13 (iii)

that among the integers m ≥ 3, it is better to choose m = 5
(as (1/m) log2 (m− 1) achieves its maximum when m = 5),
and hence we can achieve a buffer size of Uk = 2O(

√
4M/15).

(iv) From Theorem 13(iv), we see that among the integers
m ≥ 2, it is better to choose m = 3 (as (1/m) log2 m achieves
its maximum when m = 3), and hence we can achieve a
buffer size of Uk = 2O(

√
(log2 3)(log2(k+1))M/(3k)). If we need

to achieve a larger buffer size, then we need to choose a larger
k. For k ≥ 6, the result Uk = 2O(

√
(log2 3)(log2(k+1))M/(3k))

is worse than Uk = 2O(
√

4M/15) in Remark 14(iii). A similar
remark can be made by using the result in Theorem 13(v).
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V. ROUTER BUFFER SIZING, NUMERICAL RESULTS, AND
FEASIBILITY ISSUES

A. Router Buffer Sizing

The buffer sizes in today’s commercial backbone routers are
in the order of millions of packets. This follows from the well-
known rule of thumb (or the bandwidth-delay product (BDP)
rule) B = C×RTT , where B is the buffer size of the router, C
is the data rate of the bottleneck link, and RTT is the average
round-trip time of flows passing through the bottleneck link.
This rule was proposed by Villamizar and Song in 1994 [29]
in order to guarantee 100% link utilization.

When the bottleneck link carries a large number, say N ,
of desynchronized long-lived TCP flows, researchers from
Stanford University appealed to statistical multiplexing and
claimed in 2004 [30] that the buffer size follows the small-
buffer rule (or the Stanford model) B = C × RTT/

√
N ,

and the buffer size can be dramatically reduced to hundreds
or thousands of packets while achieving near 100% link
utilization at the same time. When the traffic comes from
slower access networks, or when the source paces the packets
it sends, it was claimed in [31] that the buffer size can be
further reduced to tens of packets, but at the expense of
sacrificing about 15% of link capacity. This is known as the
tiny-buffer rule in the literature. However, it was mentioned
in [32] that the small-buffer or tiny-buffer rule may not hold
when there is a small number of flows, or when there is a
very skewed mix of short-lived and long-lived flows. Whether
the small/tiny-buffer rules hold for most parts of today’s
backbone networks remains an open issue worthy of further
investigation [32]. We note that similar findings from different
perspectives are presented in [33] and [34]. We refer to [35]
for a comprehensive review of the buffer sizing problem.

As mentioned in Section I, one of the primary technological
bottlenecks in all-optical packet switching is the difficulty in
building large optical buffers. Since optical buffers are very
costly but optical link capacity is abundant in today’s optical
technology, all-optical packet switching currently is most
feasible in the tiny-buffer regime by trading off capacity for
tiny buffers. However, with the advances in optical technology,
it is possible to build all-optical packet-switched networks for
all regimes of buffer sizes in a cost-effective manner in the
future.

B. Numerical Results

We have shown in Remark 14(ii) that by using a feedback
system consisting of an optical (M+2)×(M+2) (bufferless)
crossbar switch and M fiber delay lines, we can achieve a
buffer size Uk of 2O(

√
αM) when s = 1, k ≥ 3, and m ≥ 3, or

when s ≥ 2, k ≥ 3, and m ≥ 2, where Uk is given by (22), M
is given by (23), and α is a constant that depends on s, k, and
m. It is known [36] that an N×N switch can be built by using
N log2 N −N/2 2× 2 switches via the Benes network. Thus,
the construction complexity in our constructions is increasing
with M .

For a targeted buffer size B and for given values of s and m,
we first use (22) to choose the smallest k such that Uk ≥ B in
order to achieve minimum construction complexity (as M is
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Fig. 6. The value of M required to achieve a targeted buffer size B for s = 1
and 3 ≤ m ≤ 8. (a) 24 ≤ B ≤ 220. (b) 250 ≤ B ≤ 2500.

increasing with k), and then use (23) to calculate the value of
M required to achieve the targeted buffer size B. In Figure 6,
we show the results for s = 1 and 3 ≤ m ≤ 8. It is clear
from Figure 6 that M is roughly proportional to (log2 B)2,
which conforms with the result that B ≈ Uk = 2O(

√
αM) in

Remark 14(ii). For 24 ≤ B ≤ 220, we see from Figure 6(a)
that the best choice of m is m = 4 as it achieves minimum
construction complexity. As B gets larger, say 250 ≤ B ≤
2500, we see from Figure 6(b) that the best choice of m is m =
5 as expected from our theoretical analysis in Remark 14(iii).
We note that similar results hold for s ≥ 2. In particular, for
s = 2 and s = 3, we find that the best choice of m is m = 5
for 24 ≤ B ≤ 220.

The construction in [19] is a special case of our construc-
tions with s = 1, k = 2ℓ− 1 for some ℓ ≥ 2, m = 3, n = 4,
B1 = B2ℓ−1 = 1, Bi = B2ℓ−i = 2i−2 for 2 ≤ i ≤ ℓ, and
|Ψi| = |Ψ2ℓ−i| = 2i−1 for 1 ≤ i ≤ ℓ. From Uk =

∑k
i=1 |Ψi|

and (23), we obtain

Uk = 3 · 2ℓ−1 − 2 and M = (9ℓ2 + 33ℓ− 12)/2. (30)

In Figure 7(a), we show the value of M required to achieve
the targeted buffer size B for s = 1 and m = 4, for s = 2 and
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Fig. 7. (a) The value of M required to achieve a targeted buffer size B for
s = 1 and m = 4, for s = 2 and m = 5, for s = 3 and m = 5, and for
the construction in [19]. (b) The ratio between the numbers of 2×2 switches
required to achieve a targeted buffer size B for the constructions in [19] and
for our constructions with s = 1 and m = 4.

m = 5, for s = 3 and m = 5, and for the construction in [19]
by using (30). From Figure 7(a), we see that the construction
complexity is increasing with s, and hence we should choose
s = 1 so as to achieve minimum construction complexity.
Furthermore, our constructions with s = 1 and m = 4 has
lower construction complex than that of the construction in
[19] for 24 ≤ B ≤ 220.

Note that we have mentioned above that an (M+2)×(M+
2) switch can be built by using (M+2) log2 (M + 2)−(M+
2)/2 2× 2 switches. Let Ñ and Ñ∗ be the numbers of 2× 2
switches required to achieve a targeted buffer size B for the
construction in [19] and for our constructions with s = 1 and
m = 4, respectively. We see from Figure 7(b) that Ñ/Ñ∗ is
between 1.2 and 2.08 for 24 ≤ B ≤ 220. This means that the
cost of the construction in [19] is 1.2 to 2.08 times of that of
our constructions with s = 1 and m = 4. Indeed, the actual
saving by using our constructions could be significant as an
optical 2×2 switch is still quite expensive currently. This can
be seen from Table I that the extra number Ñ − Ñ∗ of 2× 2
switches needed is quite large and ranges from 457 to 4634

for 24 ≤ B ≤ 220. Even in the tiny/small buffer regime, say,
24 ≤ B ≤ 213, the extra number of 2 × 2 switches is still
quite large and ranges from 457 to 1983.

Furthermore, we also see from Table I that the number of
2 × 2 switches needed for our constructions with s = 1 and
m = 4 goes from 423 for B = 24 in the tiny-buffer regime
to 1867 for B = 27 in the small-buffer regime, and to 8147
for B = 214 beyond the small-buffer regime. This means that
the cost for larger buffers in the small-buffer regime (resp.,
beyond the small-buffer regime) is about 5 times (resp., 20
times) higher than that in the tiny-buffer regime.

B 24 25 26 27 28 29

Ñ 880 1352 1929 2615 3412 4323

Ñ∗ 423 661 1010 1867 2374 3010

Ñ − Ñ∗ 457 691 919 748 1038 1313

Ñ/Ñ∗ 2.0804 2.0454 1.9099 1.4006 1.4372 1.4362

B 210 211 212 213 214 215

Ñ 5350 6496 7762 9151 10664 12303

Ñ∗ 3664 4452 6204 7168 8147 10277

Ñ − Ñ∗ 1686 2044 1558 1983 2517 2026

Ñ/Ñ∗ 1.4602 1.4591 1.2511 1.2766 1.3089 1.1971

B 216 217 218 219 220

Ñ 14069 15964 17990 20148 22438

Ñ∗ 11430 12730 14046 15514 18636

Ñ − Ñ∗ 2639 3234 3944 4634 3802

Ñ/Ñ∗ 1.2309 1.2540 1.2808 1.2987 1.2040

TABLE I
THE NUMBERS OF 2× 2 SWITCHES REQUIRED TO ACHIEVE A TARGETED

BUFFER SIZE B FOR THE CONSTRUCTION IN [19] AND FOR OUR
CONSTRUCTIONS WITH s = 1 AND m = 4.

C. Feasibility Issues

In [31], an optical buffer was demonstrated by using semi-
conductor optical amplifier (SOA) gate matrix 2× 2 switches
and waveguide delay lines. The SOA gate matrix switches ex-
hibit high extinction ratios (>40 dB), low crosstalk (<-40 dB),
and fast switching times (1-ns rise time 20%–80%), which
results in longer storage times, lower crosstalk interference,
and higher throughput. The waveguide delay lines have low
loss (on the order of 0.01 dB/cm) and can be integrated into a
small size. Such an implementation of optical buffers has been
demonstrated to be a viable approach for high-speed buffering
of hundreds of packets.

In reality, crosstalk due to power leakage from other optical
links, power loss experienced during recirculations through the
optical switches and the fiber delay lines, amplified sponta-
neous emission (ASE) from the Erbium-doped fiber amplifiers
(EDFA) that are used for boosting the signal power, and the
pattern effect of the optical switches, among others, lead to a
limitation on the number of times that an optical packet can
recirculate through the optical switches and the fiber delay
lines. This is because an optical packet recirculating more than
a limited number of times cannot be reliably recognized at the
destined output port due to severe power loss and/or serious
noise accumulation even if it appears at the right place and at
the right time.
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With the technological advances in 3R (reamplification,
retiming, and reshaping) regeneration, hundreds of packet re-
circulations is possible [31]. Thus, the issue of limited number
of packet recirculations may somewhat be alleviated. In the
scenario that the numbers of recirculations of most packets
are below certain threshold beyond which the received packets
cannot be recognized, the issue of limited number of packet
recirculations may not be a serious problem. For example,
in [37] we have considered the SDL constructions of optical
priority queues in [15] under i.i.d. Bernoulli arrival traffic,
i.i.d. Bernoulli control input, and uniform priority assignment.
When the arrival rate, say 0.9, is less than the departure request
rate, say 0.95, our analytical results and simulation results
show that the average number of packet recirculations is less
than two and the probability that a packet recirculating more
than 15 times is less than 10−4 (see [37, Figure 3]). This shows
that the limited number of packet recirculations may not be a
serious issue in this case.

Ideally, it would be much better to have a systematic ap-
proach that is technology-independent to build optical buffers
with a limited number of packet recirculations. Results along
this line on the constructions of optical 2FM’s with a limited
number of packet recirculations can be found in [8] and [9].

Another important practical issue of concern is fault-tolerant
capability. In the design of a network element, survivability
deals with the situation that some of the components of the
network element may not function properly. Without taking the
survivability aspect into consideration during the design pro-
cess, a network element consisting of hundreds or thousands of
components may be in a total breakdown even when only a sin-
gle component fails to function properly. As before, it would
be nice to have a technology-independent approach to build
optical buffers with fault-tolerant capability. Results along this
line on the constructions of fault-tolerant optical 2FM’s and
fault-tolerant optical linear compressors/decompressors can be
found in [7] and [38].

VI. CONCLUSION

In this paper, we have shown that the feedback system in
Figure 3(a) can be operated as an optical priority queue under
a simple priority-based routing policy. The idea is to first
route the packet with the highest (resp., lowest) priority to
the departure (resp., loss) link whenever necessary, and then
route the other packets at the input links of the crossbar switch
to the optical nFM1’s according to their buffering tags. We
have also shown that by using a feedback system consisting
of an optical (M +2)× (M +2) (bufferless) crossbar switch
and M fiber delay lines, we can achieve a buffer size of
2O(

√
αM), where α is a constant that depends on s, k, and

m. Furthermore, we showed that the best buffer size that we
can achieve is 2O(

√
4M/15). Our result (exponential in

√
M )

substantially improves on the best known result (polynomial in
M ) in the literature. From our numerical results, we showed
that the best choice of s is s = 1, and it is best to choose
s = 1 and m = 4 in the tiny/small-buffer regime. We also
showed that the construction complexity of our constructions
is lower than that of the construction in [19], and the actual

saving, in terms of the number of 2×2 switches needed, by our
constructions could be quite significant even in the tiny-buffer
and small-buffer regimes. Finally, we note that there is still
a gap between the buffer sizes of our constructions and the
theoretical upper bound 2M . Whether this theoretical upper
bound can be achieved or not and, in the case that it can be
achieved, how to achieve it remains a very challenging open
problem.
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APPENDIX A
PROOF OF LEMMA 11

(i) Suppose that i ≥ 3. Then we have

xi =

i−1∑
j=1

((m− 1)xj + 1)

=

i−2∑
j=1

((m− 1)xj + 1) + (m− 1)xi−1 + 1

= xi−1 + (m− 1)xi−1 + 1 = mxi−1 + 1.

(ii) We prove (ii) by induction on i. Clearly, we have x2 =
(m−1)x1+1 = (m−1) ·1+1 = m. Assume as the induction
hypothesis that xi−1 = mi−2 + mi−3−1

m−1 for some i − 1 ≥ 2.
Then we have from (i) (note that i ≥ 3) and the induction
hypothesis that

xi = mxi−1 + 1

= m

(
mi−2 +

mi−3 − 1

m− 1

)
+ 1

= mi−1 +
mi−2 − 1

m− 1
.

APPENDIX B
PROOF OF LEMMA 12

(i) Since p(z) is clearly a polynomial of degree s, it follows
from the fundamental theorem of algebra [20, Theorem 16.22]
that p(z) has s complex roots.

Now we show that the roots of p(z) are distinct by contra-
diction. Assume on the contrary that p(z) has a repeated root,
say λ. Let f(z) be a polynomial given by f(z) = (z−1)p(z).
Then we have

f(z) = (z − 1)p(z)

= (z − 1)

zs −
s−1∑
j=0

(m− 1)zj


= zs+1 −mzs +m− 1. (31)

As it is clear that λ is also a repeated root of f(z), we must
have f ′(λ) = 0. Thus, we see from (31) that (s + 1)λs −
m · sλs−1 = 0, and it follows from s ≥ 2 that either λ = 0
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or λ = m·s
s+1 . Since 0 cannot be a root of p(z) (as p(0) =

−(m− 1) ̸= 0), we must have

λ =
m · s
s+ 1

. (32)

From λ = m·s
s+1 ̸= 1 (as (m− 1)s ̸= 1), we see that

p(λ) = λs −
s−1∑
j=0

(m− 1)λj = λs − (m− 1)(λs − 1)

λ− 1

= λs − (m− 1)(s+ 1)(λs − 1)

(m− 1)s− 1

=
(m− 1)(s+ 1)−mλs

(m− 1)s− 1
,

and it then follows from p(λ) = 0 that

λs =
(m− 1)(s+ 1)

m
. (33)

If m = 2, then we see from λ = m·s
s+1 = 2s

s+1 in (32) and
s ≥ 2 that

λs − (m− 1)(s+ 1)

m

=

(
2s

s+ 1

)s

− s+ 1

2
=

(
1 +

s− 1

s+ 1

)s

− s+ 1

2

≥ 1 +

(
s

1

)
s− 1

s+ 1
− s+ 1

2
=

(s− 1)2

2(s+ 1)
> 0,

and we have reached a contradiction to (33) in this case. On
the other hand, if m ≥ 3, then we see from λ = m·s

s+1 in (32)
and s ≥ 2 that

λs =

(
m · s
s+ 1

)s

≥
(

3 · 2
2 + 1

)s

= 2s

> s+ 1 >
(m− 1)(s+ 1)

m
,

and we have also reached a contradiction to (33) in this case.
(ii) To prove (ii), we need Descartes’ rule of signs [21]–

[24], which says that the number z+(f) of positive roots
(counting multiplicities) of a nonzero polynomial f(z) with
real coefficients is at most equal to the number v(f) of changes
of signs in the sequence of the polynomial’s coefficients
(omitting the zero coefficients), and that the difference between
these two numbers is even, i.e.,

v(f)− z+(f) is a nonnegative even integer. (34)

It is easy to see from (34) and z+(f) ≥ 0 that

if v(f) ≤ 1, then z+(f) = v(f). (35)

Note that as it is clear that v(p) = 1, we have from (35)
that z+(p) = v(p) = 1, i.e., p(z) has exactly one positive
root. Also note that 0 cannot be a root of p(z) (as p(0) =
−(m− 1) ̸= 0).

Let f(z) = (z − 1)p(z) and let g(z) = f(−z) = −(z +
1)p(−z). Then it is easy to see that a positive number λ is
a root of g(z) if and only if −λ is a root of p(z). We first
consider the case that s is odd. In this case , we see from (31)
that g(z) = zs+1+mzs+m−1. As it is clear that v(g) = 0 in
this case, we have from (35) that z+(g) = v(g) = 0, i.e., g(z)

has no positive roots, or, equivalently, p(z) has no negative
roots. Therefore, we conclude from (i) and the results above
that p(z) has one positive root and s− 1 nonreal roots in this
case.

Now we consider the case that s is even. In this case, we
see from (31) that g(z) = −zs+1 − mzs + m − 1. As it
is clear that v(g) = 1 in this case, we have from (35) that
z+(g) = v(g) = 1, i.e., g(z) has exactly one positive root, or,
equivalently, p(z) has exactly one negative root. Therefore,
we conclude from (i) and the results above that p(z) has one
positive root, one negative root, and s−2 nonreal roots in this
case.

(iii) As p(m − 1) = −
∑s−2

j=0(m − 1)j+1 < 0 (note that
s ≥ 2) and p(m) = 1 > 0, we have from the intermediate-
value theorem for continuous functions [20, Theorem 4.33]
that m− 1 < λ+ < m. From (31), we see that

λs+1
+ −mλs

+ +m− 1 = (λ+ − 1)p(λ+) = (λ+ − 1) · 0 = 0,

and it then follows that

λ+ = m− m− 1

λs
+

. (36)

Since s ≥ 2, m ≥ 2, and we have proved that m− 1 < λ+ <
m, we deduce from (36) that m − 1/(m − 1)s−1 < λ+ <
m− (m− 1)/ms and hence λ+ ≈ m for sufficiently large s
or m.

To show that the roots of p(z) other than λ+ lie in the
annulus {z ∈ C : λ+/(λ+ + 1) ≤ |z| ≤ λ+ − m + 1}, we
need Eneström-Kakeya theorem [25]–[27, Theorem 4], which
says that if f(z) =

∑ℓ
i=0 biz

i is a polynomial of degree ℓ with
positive coefficients, i.e., bi > 0 for i = 0, 1, . . . , ℓ, then all
the roots of f(z) lie in the annulus {z ∈ C : min1≤i≤ℓ

bi−1

bi
≤

|z| ≤ max1≤i≤ℓ
bi−1

bi
}.

Since λ+ is a root of p(z), we can write p(z) as p(z) =
(z − λ+)q(z) for some polynomial q(z) =

∑s−1
i=0 biz

i. By
comparing the coefficients of the term zi in (z−λ+)q(z) and
p(z) for i = 0, 1, . . . , s, it is easy to see that −λ+b0 = −m+1,
bi−1 − λ+bi = −m+1 for i = 1, 2, . . . , s− 1, and bs−1 = 1.
In the following, we prove by induction on i that

bi =

i∑
j=0

m− 1

λj+1
+

for i = 0, 1, . . . , s− 1. (37)

Note that from −λ+b0 = −m+1, we have b0 = (m−1)/λ+.
Assume as the induction hypothesis that bi−1 =

∑i−1
j=0

m−1

λj+1
+

for some 0 ≤ i−1 ≤ s−2. Then we have from bi−1−λ+bi =
−m+ 1 and the induction hypothesis that

bi =
1

λ+
(bi−1 +m− 1)

=
1

λ+

i−1∑
j=0

m− 1

λj+1
+

+
m− 1

λ+

=

i∑
j=0

m− 1

λj+1
+

.
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From bi−1 − λ+bi = −m+ 1 for 1 ≤ i ≤ s− 1, 0 < b0 <
b1 < · · · < bs−1 (by (37)), b1 = m−1

λ2
+

(λ+ + 1) in (37), and
bs−1 = 1, we obtain

min
1≤i≤s−1

bi−1

bi
= min

1≤i≤s−1

(
λ+ − m− 1

bi

)
= λ+ − m− 1

b1
=

λ+

λ+ + 1
(38)

and

max
1≤i≤s−1

bi−1

bi
= max

1≤i≤s−1

(
λ+ − m− 1

bi

)
= λ+ − m− 1

bs−1
= λ+ −m+ 1. (39)

Therefore, we have from Eneström-Kakeya theorem, (38), and
(39) that all the roots of q(z), i.e., all the roots of p(z) other
than λ+, lie in the annulus {z ∈ C : λ+/(λ+ + 1) ≤ |z| ≤
λ+ −m+ 1}.

APPENDIX C
PROOF OF THEOREM 13

(i) Suppose that k = 2. Then we have s = 1 (as 1 ≤ s ≤
k− 1 = 1) and n = min{2s+1, k}+1 = k+1 = 3. We also
have from (A2∗) that B1 = B2 = 1. As such, it follows from
(22) that Uk =

∑2
i=1((m − 1) · 1 + 1) = 2m and it follows

from (23) that M = m
∑2

i=1(2⌈log3 1⌉+4) = 8m. Thus, we
have Uk = M/4.

(ii) Suppose that s = 1, k ≥ 3, and m = 2. Then we
have n = min{2s + 1, k} + 1 = 2s + 2 = 4 and we have
from (24) that Bi = Bk−i+1 = i for 1 ≤ i ≤ ⌈k/2⌉. If
k = 3, then we have B1 = 1, B2 = 2, and B3 = 1, and it
follows from (22) that Uk = 2+3+2 = 7 and from (23) that
M = 2(5+8+5) = 36. Thus, we have M/7 ≤ Uk ≤ (M/13)2

in this case. So we assume that k ≥ 4 in the rest of the proof.
We consider the following two cases.

Case 1: k is odd, say k = 2ℓ−1 for some ℓ ≥ 3. It follows
from (22) that

Uk = 2

ℓ−1∑
i=1

(i+ 1) + (ℓ+ 1) = ℓ2 + 2ℓ− 1, (40)

and it follows from (23) that

M = 2

[
2

ℓ−1∑
i=1

(3⌈log4 i⌉+ 5) + (3⌈log4 ℓ⌉+ 5)

]

= 12

 ℓ′∑
j=1

j(4j − 4j−1) + (ℓ′ + 1)(ℓ− 1− 4ℓ
′
)


+6⌈log4 ℓ⌉+ 10(2ℓ− 1)

= 4(3ℓ′ + 8)ℓ− 12ℓ′ − 4ℓ
′+2 + 6⌈log4 ℓ⌉ − 18, (41)

where ℓ′ is the unique nonnegative integer such that 4ℓ
′
+1 ≤

ℓ − 1 ≤ 4ℓ
′+1. From (41), 0 ≤ ℓ′ ≤ log4(ℓ − 2) ≤ (ℓ − 3)/2

(note that ℓ ≥ 3), and (40), we have

M ≤ 4(3ℓ′ + 8)ℓ− 4(ℓ− 1) + 6(ℓ′ + 2)− 18

≤ 6(ℓ− 3)ℓ+ 28ℓ+ 3(ℓ− 3)− 2

= 6ℓ2 + 13ℓ− 11 ≤ 7Uk, (42)
M ≥ 4(3ℓ′ + 8)ℓ− 12ℓ′ − 16(ℓ− 2) + 6(ℓ′ + 1)− 18

≥ 16ℓ+ 20 ≥ 13
√
Uk. (43)

Thus, we see from (42) and (43) that M/7 ≤ Uk ≤ (M/13)2.
Case 2: k is even, say k = 2ℓ for some ℓ ≥ 2. It follows

from (22) that

Uk = 2

ℓ∑
i=1

(i+ 1) = ℓ2 + 3ℓ, (44)

and it follows from (23) that

M = 2 · 2
ℓ∑

i=1

(3⌈log4 i⌉+ 5)

= 12

 ℓ′∑
j=1

j(4j − 4j−1) + (ℓ′ + 1)(ℓ− 4ℓ
′
)

+ 20ℓ

= 4(3ℓ′ + 8)ℓ− 4ℓ
′+2 + 4, (45)

where ℓ′ is the unique nonnegative integer such that 4ℓ
′
+1 ≤

ℓ ≤ 4ℓ
′+1. From (45), 0 ≤ ℓ′ ≤ log4(ℓ− 1) ≤ (ℓ− 2)/2, and

(44), we have

M ≤ 4(3ℓ′ + 8)ℓ− 4ℓ+ 4 ≤ 6(ℓ− 2)ℓ+ 28ℓ+ 4

= 6ℓ2 + 16ℓ+ 4 ≤ 7Uk, (46)
M ≥ 4(3ℓ′ + 8)ℓ− 16(ℓ− 1) + 4

≥ 16ℓ+ 20 ≥ 13
√

Uk. (47)

Thus, we see from (46) and (47) that M/7 ≤ Uk ≤ (M/13)2.
(iii) Suppose that s = 1, k ≥ 3, and m ≥ 3. Then we

have n = min{2s + 1, k} + 1 = 2s + 2 = 4 and we have
from (24) that Bi = Bk−i+1 = ((m − 1)i − 1)/(m − 2) for
1 ≤ i ≤ ⌈k/2⌉. We consider the following two cases.

Case 1: k is odd, say k = 2ℓ−1 for some ℓ ≥ 2. It follows
from (22) that

Uk = 2

ℓ−1∑
i=1

[(m− 1)((m− 1)i − 1)/(m− 2) + 1]

+(m− 1)((m− 1)ℓ − 1)/(m− 2) + 1

= [m(m− 1)ℓ+1 − 2(m− 1)2

−(2ℓ− 1)(m− 2)]/(m− 2)2. (48)

From (48), ℓ ≥ 2, and m ≥ 3, we see that

Uk ≥ [m(m− 1)ℓ+1 − 2(m− 1)ℓ

−(2ℓ− 1)(m− 2)]/(m− 2)2

= (m− 1)ℓ + (3(m− 1)ℓ − 2ℓ+ 1)/(m− 2)

≥ (m− 1)ℓ (49)
Uk ≤ m(m− 1)ℓ+1/(m− 2)2 ≤ 8(m− 1)ℓ. (50)
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For 1 ≤ i ≤ ℓ, it is easy to see that (m − 1)i−1 ≤
Bi ≤ (m − 1)i, and hence we have ⌈log4 Bi⌉ < log4 Bi +
1 ≤ i · log4 (m− 1) + 1 and ⌈log4 Bi⌉ ≥ log4 Bi ≥ (i −
1) log4 (m− 1). As such, it follows from (23) that

M

m
≤ 2

ℓ−1∑
i=1

[3(i · log4 (m− 1) + 1) + 5]

+3(ℓ · log4 (m− 1) + 1) + 5

= 3ℓ2 log4 (m− 1) + 8(2ℓ− 1)

≤ 3(ℓ+ 6)2 log4 (m− 1), (51)

M

m
≥ 2

ℓ−1∑
i=1

[3(i− 1) log4 (m− 1) + 5]

+3(ℓ− 1) log4 (m− 1) + 5

≥ 3(ℓ− 1)2 log4 (m− 1) + 5(2ℓ− 1)

≥ 3(ℓ− 1)2 log4 (m− 1). (52)

Thus, (27) follows from (49), ℓ ≥
√
2M/(3m log2 (m− 1))−

6 in (51), (50), and ℓ ≤
√
2M/(3m log2 (m− 1))+1 in (52).

Case 2: k is even, say k = 2ℓ for some ℓ ≥ 2. It follows
from (22) that

Uk = 2

ℓ∑
i=1

[(m− 1)((m− 1)i − 1)/(m− 2) + 1]

= [2(m− 1)ℓ+2 − 2(m− 1)2

−2ℓ(m− 2)]/(m− 2)2. (53)

From (53), ℓ ≥ 2, and m ≥ 3, we see that

Uk ≥ [2(m− 1)ℓ+2 − 2(m− 1)ℓ − 2ℓ(m− 2)]/(m− 2)2

= 2(m− 1)ℓ + (4(m− 1)ℓ − 2ℓ)/(m− 2)

≥ (m− 1)ℓ, (54)
Uk ≤ 2(m− 1)ℓ+2/(m− 2)2 ≤ 8(m− 1)ℓ. (55)

As in Case 1 above, it follows from (23) that

M

m
≤ 2

ℓ∑
i=1

[3(i · log4 (m− 1) + 1) + 5]

= 3ℓ(ℓ+ 1) log4 (m− 1) + 16ℓ

≤ 3(ℓ+ 6)2 log4 (m− 1), (56)

M

m
≥ 2

ℓ∑
i=1

[3(i− 1) log4 (m− 1) + 5]

= 3ℓ(ℓ− 1) log4 (m− 1) + 10ℓ

≥ 3(ℓ− 1)2 log4 (m− 1). (57)

Thus, (27) also follows from (54)–(57) as in Case 1 above.
(iv) Suppose that s ≥ 2, s + 1 ≤ k ≤ 2s, and m ≥ 2.

Then we have n = min{2s + 1, k} + 1 = k + 1 and we
have from (25) that B1 = Bk = 1 and Bi = Bk−i+1 =
mi−1 + (mi−2 − 1)/(m− 1) for 2 ≤ i ≤ ⌈k/2⌉. We consider
the following two cases.

Case 1: k is odd, say k = 2ℓ−1 for some ⌈s/2⌉+1 ≤ ℓ ≤ s.
It follows from (22) that

Uk = 2m

+2

ℓ−1∑
i=2

[(m− 1)(mi−1 + (mi−2 − 1)/(m− 1)) + 1]

+(m− 1)(mℓ−1 + (mℓ−2 − 1)/(m− 1)) + 1

= mℓ + ((m2 + 1)mℓ−2 − 2)/(m− 1). (58)

From (58), ℓ ≥ ⌈s/2⌉+ 1 ≥ 2, and m ≥ 2, we see that

mℓ ≤ Uk ≤ 3mℓ. (59)

For 1 ≤ i ≤ ℓ, it is easy to see that mi−1 ≤ Bi ≤ (k +
1)mi−1, and hence we have ⌈logk+1 Bi⌉ < logk+1 Bi + 1 ≤
(i − 1) logk+1 m + 2 and ⌈logk+1 Bi⌉ ≥ logk+1 Bi ≥ (i −
1) logk+1 m. As such, it follows from (23) that

M

m
≤ 2

ℓ−1∑
i=1

[k((i− 1) logk+1 m+ 2) + k + 2]

+k((ℓ− 1) logk+1 m+ 2) + k + 2

= k(ℓ− 1)2 logk+1 m+ (3k + 2)(2ℓ− 1)

≤ k(ℓ+ 4/ logk+1 m)2 logk+1 m

= k(ℓ+ 4 log2 (k + 1)/ log2 m)2

× log2 m/ log2 (k + 1), (60)

M

m
≥ 2

ℓ−1∑
i=1

[k(i− 1) logk+1 m+ k + 2]

+k(ℓ− 1) logk+1 m+ k + 2

= k(ℓ− 1)2 logk+1 m+ (k + 2)(2ℓ− 1)

≥ k(ℓ− 1)2 log2 m/ log2 (k + 1). (61)

Thus, we can see that (28) follows from (59), ℓ ≥√
M log2(k + 1)/(km log2 m)−4 log2(k+1)/ log2 m in (60),

and ℓ ≤
√

M log2(k + 1)/(km log2 m) + 1 in (61).
Case 2: k is even, say k = 2ℓ for some ⌈(s+1)/2⌉ ≤ ℓ ≤ s.

It follows from (22) that

Uk = 2m+ 2

ℓ∑
i=2

[(m− 1)(mi−1

+(mi−2 − 1)/(m− 1)) + 1]

= 2mℓ + 2(mℓ−1 − 1)/(m− 1). (62)

From (62), ℓ ≥ ⌈(s+ 1)/2⌉ ≥ 2, and m ≥ 2, we see that

mℓ ≤ Uk ≤ 3mℓ. (63)

As in Case 1 above, it follows from (23) that

M

m
≤ 2

ℓ∑
i=1

[k((i− 1) logk+1 m+ 2) + k + 2]

= kℓ(ℓ− 1) logk+1 m+ (3k + 2) · 2ℓ
≤ k(ℓ+ 4/ logk+1 m)2 logk+1 m

= k(ℓ+ 4 log2 (k + 1)/ log2 m)2

× log2 m/ log2 (k + 1), (64)
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M

m
≥ 2

ℓ∑
i=1

[k(i− 1) logk+1 m+ k + 2]

= kℓ(ℓ− 1) logk+1 m+ (k + 2) · 2ℓ
≥ k(ℓ− 1)2 log2 m/ log2 (k + 1). (65)

Thus, (28) also follows from (63)–(65) as in Case 1 above.
(v) Suppose that s ≥ 2, k ≥ 2s + 1, and m ≥ 2. Then

we have n = min{2s + 1, k} + 1 = 2s + 2. Assume that
Bi = Bk−i+1 ≈ α+m

i for 1 ≤ i ≤ ⌈k/2⌉. We consider the
following two cases.

Case 1: k is odd, say k = 2ℓ − 1 for some ℓ ≥ s + 1. It
follows from (22) that

Uk ≈ 2

ℓ−1∑
i=1

[(m− 1)α+m
i + 1] + (m− 1)α+m

ℓ + 1

= 2α+(m
ℓ −m) + α+(m− 1)mℓ + 2ℓ− 1

≈ α+m
ℓ+1, (66)

and it follows from (23) that

M

m
≈ 2

ℓ−1∑
i=1

[(2s+ 1) log2s+2(α+m
i) + 2s+ 3]

+(2s+ 1) log2s+2(α+m
ℓ) + 2s+ 3

= (2s+ 1)ℓ2 log2s+2 m

+((2s+ 1) log2s+2 α+ + 2s+ 3)(2ℓ− 1)

≈ (2s+ 1)ℓ2 log2 m/ log2(2s+ 2). (67)

Thus, we can see that (29) follows from (66) and ℓ ≈√
M log2(2s+ 2)/((2s+ 1)m log2 m) in (67).
Case 2: k is even, say k = 2ℓ for some ℓ ≥ s+1. It follows

from (22) that

Uk = 2

ℓ∑
i=1

[(m− 1)α+m
i + 1]

= 2α+(m
ℓ+1 −m) + 2ℓ

≈ α+m
ℓ+1, (68)

and it follows from (23) that

M

m
≈ 2

ℓ∑
i=1

[(2s+ 1) log2s+2(α+m
i) + 2s+ 3]

= (2s+ 1)ℓ(ℓ+ 1) log2s+2 m

+2ℓ((2s+ 1) log2s+2 α+ + 2s+ 3)

≈ (2s+ 1)ℓ2 log2 m/ log2(2s+ 2). (69)

Thus, (29) follows from (68) and (69) as in Case 1 above.
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of Leiden, 1637, p. 373.

[22] R. Descartes, The Geometry of René Descartes with a Facsimile of the
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