COM 5110

Random Processes for Communications - Spring 2018
Solutions for homework 2
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Therefore, when [t| < pu, the MGF of Bilateral exponential distribution exists.

(b)

By using the following integration by parts:
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Then, substituting this into the above definite integrals, and after some manipulation,
we obtain:
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(a) When ny = 1, V; = U?, where U is a standard normal variable. Then
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Therefore, the I variable is simply the squre of the ¢ variable of degree ns. We can derive



the distribution of Fi ,, from that of t,2.
fr(z)der = Plx < F < z + dx]
= Plz < t* < 2 + dx]
= Pz <t< (z+dz)?]+ Pl—vz >t>—(z +dz)?]

1 1
(By Taylor series approximation: (1 + :B)% =1+ -z— -2+ ---~1+-2)

2 8
—P[\/><t<\r+7]+P[ \/>>t> \/> f
:ft(\/f)‘Fft(—\f)dm
2V
_ e, 3y-mpde
T TV

This is a special case of (7.40) in the textbook.
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The median of the distribution (7.46) in the textbook iS Ymedian = py since Y =

a monotone increasing function. The corresponding Z,,edian 1S

:Emedian — eymﬁdian — 6,“‘Y
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Take the logarithm of (7.47) in the textbook:
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Y

Differentiate the above equation with respect to x:
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The mode Z,0qe is such x that maximizes fx (x), and thus f% (Zmede) = 0, Thus, we have
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Since -logx is a convex function and by Jensen’s inequality, we have
E[-logX]| > —log E[X].

Assume the RV X that takes on values x; = % with probability f;. Then

Z leog —logz fz — log1 =0.



(b) Since f is fixed, it can — f;log g; is a convex function in g;. Hence,
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is convex in g. Instead, we now solve the following convex minimization problem:
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by solving the associated KKT conditions. The Lagrangian is given by
The KKT conditions are as follows:
VeL(g.N) = ~[f1/g1, - fu/gu]" + AL, 1T =0
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By solving the above two equations, we come up with the optimal g* = f. Therefore,

Z —filogg; > f(g Z —filog f;.

Thus the proof has been finished.

Therefore,

for any € > 0. Hence, X, e
5. (a) Consider Markov’s inequality:
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Therefore, for g = 0.8, the upper bound is % = 0.625 for all n.
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(b) Writing b =n8 = % + (8 — 3)n =E[T},] + (8 — $)n, we obtain

P[Tnznﬂ}:P[Tn—E[Tn]2(5—*) n] < P[|T,, — E[T, ]|>(5—*) n]
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Thus, the probability that T, exceeds b = n approaches zero as n increases. For g = (.8,
the upper bound is ﬁ, which is 2.78 x 1072 for n = 100, and 2.78 x 1073 for n = 1000.

6. (a) Let b > —a, hence

PX>a]=PX+b>a+b=P[(X+b)? > (a+0b)?
E[(X +b)?% o+ b?
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Let f(b) = (‘2:132 Then it can be shown that under if —a < b < 3"2+a ,

V2 f(b) = (a+b)"*(60% — 4ab+ 2a?) > 0

implying that f(b) is convex over [—a, 3”22:“2]. Therefore letting 9f(b)/0b = 0 yields
b = %2 € [—a, #] The optimal value f(b*) =

implying that
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(b) X — p has mean zero and variance o2, we obtain the first inequality from (a).

Similarly, 4 — X has mean zero and variance o2 and we obtain the second inequality.
7. (a)
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My(€) = /%, my () = €/2, my(€) = ¢

So, & that achieves a minimum is the root of
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P[S > b < 6—”[5*mzj(§*)—mU(E*)] — e—n(BQ—ﬂQ/Q) — e_"52/2, b> 0.

Substitute b = nf to above equation, we have finished the proof.



8.

The distribution function of Z,, is given by

Fz (2)=P[Z, <z]=Pln(1-Y,) <z =P[Y, >1-"].
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Since Y;,, = max{X1, Xo,..., Xp},
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PY,<1—--]=P[X;<1—=, 1<i<n]=[Fx(1-2)"
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Let x = % and use the binomial theorem lim; .o(1 — I)l/ = e~ we have
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From the above equations, we have
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Therefore, we have
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Therefore, X,, — 0.
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(¢) X, ®3 0 if and only if lim,, oo P[Bm(€)] = 1. By the result of (b), {X,} does not
converge almost surely to 0.

10. The normalized average Z,, is given by

where

where Mg (t) is the common MGF of X Using the Taylor series expansion, we can write
M (t) as follows:
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where 0(%) denotes the sum of all the higher order terms. Hence, we have
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which is the MGF of the unit normal distribution. This establishes that Z,, converges in
distribution to the unit normal variable.



