COM 5110 Random Processes for Communications - Spring 2018 Homework 1 (Due date: March 26, 2018)

(Please write down the answer in detail !)

- 1. (10 points) In a group of r persons, what is the probability that each person has a distinct birthday? We assume that birth rates are constant throughout the year, and ignore complications due to leap years. Evaluate (approximately) this probability for r = 23 and r = 56. Hint: Use the approximation $ln(1-x) \approx -x$ for $|x| \ll 1$.
- 2. (10 points) Detail the following questions:
 - (a) Show that the mean and the variance of the geometric RV X are as $E[X] = \frac{1}{p}$ and $Var[X] = \frac{q}{p^2}$ where p is the probability of success, q = 1 p is the probability of failure.
 - (b) If $X \sim \text{Poisson}(\lambda)$, show that the mean, the second moment, and the variance.
- 3. (10 points) Consider a pair of continuous RVs (X, Y) that have a joint PDF of the form:

$$f_{XY}(x,y) = \begin{cases} ke^{-\lambda x - \mu y}, & \text{if } x \ge 0, y \ge 0\\ 0, & \text{otherwise.} \end{cases}$$

where $\lambda > 0$, $\mu > 0$.

- (a) Obtain the joint distribution function $F_{XY}(x, y)$ and determine the normalization constant k.
- (b) Find the distribution functions $F_X(x)$ and $F_Y(y)$ and the conditional distribution function $F_{Y|X}(y|x)$.
- 4. (10 points) Show the following properties of conditional expection for two continuous RVs X and Y:
 - (a) $E[\cdot|Y]$ is a linear operator.
 - (b) E[E[X|Y]] = E[X].
 - (c) E[h(Y)g(X)|Y] = h(Y)E[g(X)|Y], where h and g are scalar functions.
- 5. (10 points) Let X and Y be independent exponential variables with rate parameters λ and μ , respectively:

$$f_X(x) = \lambda e^{-\lambda x} u(x)$$
 and $f_Y(y) = \mu e^{-\mu y} u(y)$,

where $u(\cdot)$ is the unit step function.

- (a) Find the PDF of Z = X + Y.
- (b) What form does $f_Z(z)$ take when $\lambda = \mu$?

6. (10 points) Let

$$Z = \min\{X, Y\} = \begin{cases} X, & \text{if } X \le Y, \\ Y, & \text{otherwise.} \end{cases}$$

- (a) Find the domain D_z and sketch the region in X-Y plane.
- (b) Show that the distribution function of Z is given by

$$F_Z(z) = F_X(z) + F_Y(z) - F_{XY}(z, z).$$

- (c) Find the PDF $f_Z(z)$ when X and Y are independent.
- (d) Let X and Y be both exponentially distributed with rate parameters λ and μ , respectively. Show that Z is also exponentially distributed.
- 7. (10 points) Let X_1 and X_2 are two independent RVs, both of which are from the normal distribution with zero mean and variance equal to one, i.e., N(0,1). Then, transform the pair (X_1, X_2) into the polar coordinates (R, Θ) :
 - (a) Show that the distribution function of R is given by

$$F_R(r) = 1 - e^{\frac{-r^2}{2}}$$

and Θ is a uniform RV over $[0, 2\pi]$.

- (b) Show that $Y = X_1^2 + X_2^2$ is exponentially distributed with mean 2.
- 8. (10 points)
 - (a) Show that the χ_n^2 has the *m*th moment as

$$E[(\chi_n^2)^m] = \frac{2^m \Gamma(\frac{n}{2} + m)}{\Gamma(\frac{n}{2})}, \ m = 1, 2, 3, \dots$$

(b) Show that the rth moment of the F-distribution with (n_1, n_2) degree of freedom is given by

$$E[F^{r}] = \frac{(\frac{n_{2}}{n_{1}})^{r} \Gamma(\frac{n_{1}}{2} + r) \Gamma(\frac{n_{2}}{2} - r)}{\Gamma(\frac{n_{1}}{2}) \Gamma(\frac{n_{2}}{2})}$$

which exists only for $-n_1 < 2r < n_2$. *Hint* : Use the result of 8(a).

- 9. (10 points)
 - (a) Show that the moment-generating function (MGF) of the uniform distribution

$$f_X(x) = \frac{1}{a}, \ 0 < x < a,$$

is given by

$$M_X(t) = \begin{cases} \frac{e^{at} - 1}{at}, & \text{if } t \neq 0, \\ 1, & t = 0. \end{cases}$$

(b) Derive the MGF of the uniform distribution

$$f_X(x) = \frac{1}{2a} , \ |x| < a.$$

(c) Derive the MGF of the exponential distribution

$$f_X(x) = \mu e^{-\mu x}, \ 0 \le x < \infty.$$

10. (10 points)

(a) Show that the characteristic function (CF) of the binomial distribution $B(k; n, p), k = 0, 1, 2, \ldots, n$ is given by

$$\phi(u) = (pe^{iu} + 1 - p)^n , -\infty < u < \infty.$$

(b) Show that the Poisson distribution with mean λ has the CF given by

$$\phi(u) = e^{\lambda(e^{iu} - 1)} , \quad -\infty < u < \infty.$$