Convex Optimization for Communications Institute of Communications Engineering Department of Electrical Engineering National Tsing Hua University	and Signal Processing	Fall 2020
Home	work $\#2$	
Coverage: Chapter 1–3		
Due date: 25 November, 2020		
Instructor: Chong-Yung Chi	TAs: Wei-Bang Wang & M	Meng-Syuan Lin

Notice:

- 1. Please hand in the hardcopy of your answer sheets to the TAs by yourself before the deadline.
- 2. Ansewrs to the problem set should be written on the A4 papers.
- 3. Write your name, student ID, and department on the begining of your ansewr sheets.
- 4. Please do the homework independently by yourself, and support your answers with clear, logical and solid reasoning or proofs.
- 5. We will grade the homework and provide the solutions afterwards. However, it is not required to hand in your homework since the percentage of homework is zero in the term grade.

Problem 1. (10 points) Let $S \in \mathbb{R}^n$ be a compact set. Let $N : \mathbb{R}^n \to \mathbb{R}$ and $D : \mathbb{R}^n \to \mathbb{R}$ be continuous functions of \mathbf{x} , and $D(\mathbf{x}) > 0$ for all $\mathbf{x} \in S$. Show that the function F, defined as

$$F(t) = \max \{ N(\mathbf{x}) - tD(\mathbf{x}) \mid \mathbf{x} \in S \}, \text{ dom } F = \mathbb{R},$$

is convex.

Problem 2. (10 points) Suppose $f : \mathbb{R} \to \mathbb{R}$ is convex and differentiable, with $\mathbb{R}_+ \subseteq \text{dom } f$. Show that the function F, defined as

$$F(x) = \frac{1}{x} \int_0^x f(t) dt, \quad \mathbf{dom} \ f = \mathbb{R}_{++},$$

is convex.

Problem 3. (10 points) Prove that a function $f : \mathbb{R}^n \to \mathbb{R}$ is quasiconvex *if and only if* for all $\mathbf{x} \in \operatorname{dom} f$ and for all \mathbf{v} , the function $g(t) = f(\mathbf{x} + t\mathbf{v})$ is quasiconvex on its domain $\{t \mid \mathbf{x} + t\mathbf{v} \in \operatorname{dom} f\}$.

Problem 4. (25 points) Show that the following functions are convex/concave:

- (a) (5 points) $f(\mathbf{X}) = \sup_{\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{\|\mathbf{X}\mathbf{v}\|_2}{\|\mathbf{v}\|_2}$ on $\mathbb{R}^{m \times n}$.
- (b) (5 points) $f(\mathbf{x}, \mathbf{Y}) = \mathbf{x}^T \mathbf{Y}^{-1} \mathbf{x}$ on $\mathbb{R}^n \times \mathbb{S}_{++}^n$.
- (c) (7 points) $f(\mathbf{X}) = (\det(\mathbf{X}))^{1/m}$ with **dom** $f = \mathbb{S}_{++}^m$
- (d) (8 points) $f(\mathbf{x}) = (\det (\mathbf{A}_0 + x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n))^{1/m}$, on $\{\mathbf{x} = [x_1, \dots, x_n]^T \in \mathbb{R}^n | \mathbf{A}_0 + x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n \succ 0\}$, where $\mathbf{A}_i \in \mathbb{S}^m$.

Problem 5. (15 points) Let $f(\mathbf{X}) = \operatorname{rank}(\mathbf{X})$, with dom $f \triangleq \mathcal{B} = {\mathbf{X} \in \mathbb{R}^{M \times N} | \|\mathbf{X}\|_* = \|\mathbf{X}\|_{\mathcal{A}} \le 1} =$ conv \mathcal{A} , where \mathcal{A} is the set of rank-1 matrices. Prove that the convex envelope of f can be shown to be

$$g_f(\mathbf{X}) = \|\mathbf{X}\|_* = \sum_{i=1}^{\operatorname{rank}(\mathbf{X})} \sigma_i(\mathbf{X}), \quad \mathbf{X} \in \mathcal{B}.$$

Problem 6. (15 points) Let $K \subseteq \mathbb{R}^m$ be a proper cone with the associated generalized inequality \preceq_K , and let $f : \mathbb{R}^n \to \mathbb{R}^m$. For $\alpha \in \mathbb{R}^m$, the α -sublevel set of f (with respect to \preceq_K) is defined as

$$C_{\boldsymbol{\alpha}} = \{ \mathbf{x} \in \mathbb{R}^n \mid f(\mathbf{x}) \preceq_K \boldsymbol{\alpha} \}.$$

The epigraph of f, with respect to \preceq_K , is defined as the set

$$\mathbf{epi}_K \ f = \{ (\mathbf{x}, \mathbf{t}) \in \mathbb{R}^{n+m} \mid f(\mathbf{x}) \preceq_K \mathbf{t} \}.$$

Show the following:

- (a) (4 points) If f is K-convex, then its sublevel sets C_{α} are convex for all α .
- (b) (5 points) f is K-convex if and only if $epi_K f$ is a convex set.
- (c) (6 points) $\mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}$ is \mathbb{S}^k_+ -convex on $\{(\mathbf{A}, \mathbf{B}) \in \mathbb{S}^k_{++} \times \mathbb{R}^{k \times (n-k)}\}$.

Problem 7. (15 points) Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$. Prove the following.

- (a) (10 points) If f and g are convex, both nonincreasing (or nondecreasing), and positive function on an interval, then the product of two functions fg is convex on the same interval.
- (b) (5 points) If f is convex, nondecreasing, and positive, and g is concave, nonincreasing, and positive, then the ratio of two functions f/g is convex.