Convex Optimization for Communications and Signal Processing

Homework \#1
Coverage: chapter 1-2
Due date: 28 October, 2020
Instructor: Chong-Yung Chi
TAs: Wei-Bang Wang \mathcal{E}^{3} Meng-Syuan Lin

Notice:

1. Please hand in the hardcopy of your answer sheets to the TAs by yourself before the deadline.
2. Ansewrs to the problem set should be written on the A4 papers.
3. Write your name, student ID, and department on the begining of your ansewr sheets.
4. Please do the homework independently by yourself, and support your answers with clear, logical and solid reasoning or proofs.
5. We will grade the homework and provide the solutions afterwards. However, it is not required to hand in your homework since the percentage of homework is zero in the term grade.

Problem 1. (5 points) Let $\mathcal{F}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2} \mid x_{1}^{2} \leq x_{2}\right\}$. Is this a convex set? Justify your answer.
Problem 2. (5 points) Let K_{i} for $i=1, \ldots, n$ be cones.
(a) (2 points) Is $\mathcal{K}_{1} \triangleq \cap_{i=1}^{n} K_{i}$ a cone? Justify your answer.
(b) (3 points) Let $\mathcal{K}_{2} \triangleq\left\{\mathbf{x}=\sum_{i=1}^{n} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in K_{i}\right\}$. Is \mathcal{K}_{2} a cone? Justify your answer.

Problem 3. (10 points)
(a) (3 points) Represent the set $\left\{\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2} \mid x_{1} x_{2} \geq 1\right\}$, as the intersection of some family of halfspaces.
(b) (3 points) Suppose that C and D are disjoint subsets of \mathbb{R}^{n}. Show that the set,

$$
A=\left\{(\mathbf{a}, b) \in \mathbb{R}^{n+1} \mid \mathbf{a}^{T} \mathbf{x} \leq b \forall \mathbf{x} \in C, \mathbf{a}^{T} \mathbf{x} \geq b, \forall \mathbf{x} \in D\right\}
$$

is a convex cone.
(c) (4 points) Consider two solid convex cones K_{1} and K_{2}. Show that if int $K_{1} \cap \operatorname{int} K_{2}=\emptyset$, then there is $\mathbf{y} \neq \mathbf{0}$ such that, $\mathbf{y} \in K_{1}^{*},-\mathbf{y} \in K_{2}^{*}$.

Problem 4. (10 points) Consider the set of points, $X \triangleq\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ and point \mathbf{q}, all in \mathbb{R}^{d}. Let $\mathcal{H}\left(\mathbf{q}-\mathbf{x}_{i}, \mathbf{x}_{i}\right)$ be the hyperplane that contains \mathbf{x}_{i} and is perpendicular to the line segment between \mathbf{q} and \mathbf{x}_{i}. Define $H_{\mathbf{q}}\left(\mathbf{x}_{i}\right)$ as the halfspace that does not contain the point $\mathbf{q} \in \mathbb{R}^{d}$ and bounded by hyperplane $\mathcal{H}\left(\mathbf{q}-\mathbf{x}_{i}, \mathbf{x}_{i}\right)$. Show that

$$
\bigcap_{i=1}^{n} H_{\mathbf{q}}\left(\mathbf{x}_{i}\right)=\emptyset \quad \Leftrightarrow \quad \mathbf{q} \in \operatorname{conv} X
$$

Problem 5. (20 points) Which of the following sets S are polyhedra? If possible, express S in the form $S=\{\mathbf{x} \mid \mathbf{A x} \preceq \mathbf{b}, \mathbf{F} \mathbf{x}=\mathbf{g}\}$.
(a) $S=\left\{y_{1} \mathbf{a}_{1}+y_{2} \mathbf{a}_{2} \mid-1 \leq y_{1} \leq 1,-1 \leq y_{2} \leq 1\right\}$, where $\mathbf{a}_{1}, \mathbf{a}_{2} \in \mathbb{R}^{n}$ are linearly independent.
(b) $S=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \succeq \mathbf{0}, \mathbf{1}^{T} \mathbf{x}=1, \quad \sum_{i=1}^{n} x_{i} a_{i}=b_{1}, \quad \sum_{i=1}^{n} x_{i} a_{i}^{2}=b_{2}\right\}$, where $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $b_{1}, b_{2} \in \mathbb{R}$.
(c) $S=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \succeq \mathbf{0}, \mathbf{x}^{T} \mathbf{y} \leq 1\right.$ for all \mathbf{y} with $\left.\|\mathbf{y}\|_{2}=1\right\}$.
(d) $S=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \succeq \mathbf{0}, \mathbf{x}^{T} \mathbf{y} \leq 1\right.$ for all \mathbf{y} with $\left.\sum_{i=1}^{n}\left|y_{i}\right|=1\right\}$.

Problem 6. (10 points) Consider the sets $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{C} \subseteq \mathbb{R}^{n}$, where \mathcal{A} is a closed set. Assume that \mathcal{H} is a supporting hyperplane of \mathcal{A} and \mathcal{C}. Prove $(\mathbf{b d} \mathcal{A}) \cap \mathcal{H} \subseteq \mathbf{b d} \mathcal{B}$.

Problem 7. (10 points) A set C is midpoint convex if whenever two points a, b are in C, the average or midpoint $(a+b) / 2$ is in C. Obviously a convex set is midpoint convex. Prove that if C is closed and midpoint convex, then C is convex.

Problem 8. (15 points) Define the monotone nonnegative cone as

$$
K=\left\{\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \in \mathbb{R}^{n} \mid x_{1} \geq x_{2} \geq \cdots \geq x_{n} \geq 0\right\}
$$

(a) Show that K is a proper cone.
(b) Find the dual cone K^{*}. Hint. Use the identity

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i} y_{i} & =\left(x_{1}-x_{2}\right) y_{1}+\left(x_{2}-x_{3}\right)\left(y_{1}+y_{2}\right)+\left(x_{3}-x_{4}\right)\left(y_{1}+y_{2}+y_{3}\right) \\
& +\cdots+\left(x_{n-1}-x_{n}\right)\left(y_{1}+\cdots+y_{n-1}\right)+x_{n}\left(y_{1}+\cdots+y_{n}\right)
\end{aligned}
$$

Problem 9. (15 points) Let C be a set in \mathbb{R}^{n}. For any $\mathbf{x} \in \mathbf{c o n v} C$, prove that it can be represented as

$$
\mathbf{x}=\sum_{i=1}^{d} \theta_{i} \mathbf{x}_{i}, \quad \theta_{i} \in[0,1], \sum_{i=1}^{d} \theta_{i}=1
$$

where $\mathbf{x}_{i} \in C$ such that $d \leq n+1$.
Problem 10. (10 points) Suppose that C and D are closed convex cones in \mathbb{R}^{n}, and C^{*} and D^{*} are the associated dual cones. Show that

$$
(C \cap D)^{*}=C^{*}+D^{*}
$$

