Convex Optimization for Communications and Signal Processing Institute of Communications Engineering Department of Electrical Engineering National Tsing Hua University

Homework #2

Coverage: chapter 1-3

Due date: 23 November, 2018

Instructor: Chong-Yung Chi

TAs: Amin Jalili & Yi-Wei Li

Fall 2018

Notice:

- 1. Please hand in the hardcopy of your answer sheets to the TAs by yourself before 23:59 of the due date. No late homework will be accepted.
- 2. Ansewrs to the problem set should be written on the A4 papers.
- 3. Write your name, student ID, email and department on the begining of your ansewr sheets.
- 4. You should have a clear idea to solve a problem. Please support your answers with clear, logical and solid reasoning or proofs.
- 5. Please do the homework independently by yourself. However, you may discuss with someone else but copyied homework is not allowed. This will show your respect toward the academic integrity.
- 7. Please write your best solution for each problem. There will be bonus for the creative and beautiful solutions!

Problem 1. (4 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a decreasing and convex function on its domain (a, b). Let g denote its inverse function. Is g a convex function? Justify your answer.

Problem 2. (6 points)

(a) (3 points) Let $f_i : \mathbb{R}^m \to \mathbb{R}$, i = 1, ..., n, be quasi-convex functions, and $w_i \ge 0$ for i = 1, ..., n. Show that the function $f : \mathbb{R}^m \to \mathbb{R}$ defined as

$$f(\mathbf{x}) \triangleq \max\{w_1 f_1(\mathbf{x}), \dots, w_n f_n(\mathbf{x})\}$$

is quasi-convex.

(b) (3 points) Let $g : \mathbb{R}^m \to \mathbb{R}$ be quasi-convex, and $h : \mathbb{R} \to \mathbb{R}$ is nondecreasing. Show that the function $f : \mathbb{R}^m \to \mathbb{R}$ defined as

$$f(\mathbf{x}) \triangleq h(g(\mathbf{x}))$$

is quasi-convex.

Problem 3. (15 points) Let $K \subseteq \mathbb{R}^m$ be a proper cone with associated generalized inequality \preceq_K , and let $f : \mathbb{R}^n \to \mathbb{R}^m$. For $\alpha \in \mathbb{R}^m$, the α -sublevel set of f (with respect to \preceq_K) is defined as

$$C_{\boldsymbol{\alpha}} = \{ \mathbf{x} \in \mathbb{R}^n | \boldsymbol{f}(\mathbf{x}) \preceq_K \boldsymbol{\alpha} \}$$

The epigraph of f, with respect to \leq_K , is defined as the set

$$\mathbf{epi}_K \mathbf{f} = \{(\mathbf{x}, \mathbf{t}) \in \mathbb{R}^{n+m} | \mathbf{f}(\mathbf{x}) \preceq_K \mathbf{t} \}.$$

Show the following:

- (a) (4 points) If \boldsymbol{f} is K-convex, then its sublevel sets $C_{\boldsymbol{\alpha}}$ are convex for all $\boldsymbol{\alpha}$.
- (b) (5 points) \boldsymbol{f} is K-convex if and only if $\mathbf{epi}_K \boldsymbol{f}$ is a convex set.
- (c) (6 points) $\mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}$ is \mathbb{S}^k_+ -convex on $\{(\mathbf{A}, \mathbf{B}) \in \mathbb{S}^k_{++} \times \mathbb{R}^{k \times (n-k)}\}$.

Problem 4. (10 points)

- (a) (5 points) Show that $f(\mathbf{X}, t) = nt(\log t) t \log \det \mathbf{X}$, with **dom** $f = \mathbb{S}_{++}^n \times \mathbb{R}_{++}$, is convex in (\mathbf{X}, t) .
- (b) (5 points) Use the result obtained in (a) to show that

$$g(\mathbf{X}) = n(\operatorname{Tr}(\mathbf{X}))\log(\operatorname{Tr}(\mathbf{X})) - (\operatorname{Tr}(\mathbf{X}))\log\det\mathbf{X}$$

is convex on \mathbb{S}^n_{++} .

Problem 5. (10 points) Show that the following functions are convex/concave.

- (a) (5 points) $f(\mathbf{X}) = (\det(\mathbf{X}))^{1/m}$ with **dom** $f = \mathbb{S}_{++}^m$.
- (b) (5 points) $f(\mathbf{x}) = (\det (\mathbf{A}_0 + x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n))^{1/m}$, on $\{\mathbf{x} = [x_1, \dots, x_n]^T \in \mathbb{R}^n | \mathbf{A}_0 + x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n \succ 0\}$, where $\mathbf{A}_i \in \mathbb{S}^m$.

Problem 6. (25 points) Let dom $f = \mathcal{B} \triangleq \{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}||_1 \le 1\}$. Using the definition of *convex envelope*, show that:

$$f(\mathbf{x}) = \|\mathbf{x}\|_0, \ \mathbf{x} \in \mathcal{B} \ \leftrightarrow \ g_f(\mathbf{x}) = \|\mathbf{x}\|_1, \ \mathbf{x} \in \mathcal{B}$$
(1)

where $g_f(\mathbf{x})$ is the convex envelope of f.

Problem 7. (10 points) Show that the following functions are convex/concave:

(a) (6 points)
$$f(\mathbf{X}) = \sup_{\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{\|\mathbf{X}\mathbf{v}\|_2}{\|\mathbf{v}\|_2}$$
 on $\mathbb{R}^{m \times n}$.

(b) (4 points) $f(\mathbf{x}, \mathbf{Y}) = \mathbf{x}^T \mathbf{Y}^{-1} \mathbf{x}$ on $\mathbb{R}^n \times \mathbb{S}^n_{++}$.

Problem 8. (20 points) Let

$$f(\mathbf{x}) = \operatorname{Tr}\left((\mathbf{P} + \mathbf{Diag}(\mathbf{x}))^{-1}\right),\tag{2}$$

where $\mathbf{x} \in \mathbb{R}^{n}_{++}$, $\mathbf{P} \in \mathbb{S}^{n}_{++}$ and $\mathbf{Diag}(\mathbf{x})$ is an $n \times n$ diagonal matrix with the *i*th diagonal element equal to the *i*th element of \mathbf{x} . Is f a convex function? Justify your answer.