Convex Optimization for Communications and Signal Processing Institute of Communications Engineering Department of Electrical Engineering National Tsing Hua University

Homework #1

Coverage: chapter 1–2

Due date: 26 October, 2018

Instructor: Chong-Yung Chi

TAs: Amin Jalili & Yi-Wei Li

Fall 2018

Notice:

- 1. Please hand in the hardcopy of your answer sheets to the TAs by yourself before 23:59 of the due date. No late homework will be accepted.
- 2. Ansewrs to the problem set should be written on the A4 papers.
- 3. Write your name, student ID, email and department on the begining of your ansewr sheets.
- 4. You should have a clear idea to solve a problem. Please support your answers with clear, logical and solid reasoning or proofs.
- 5. Please do the homework independently by yourself. However, you may discuss with someone else but copyied homework is not allowed. This will show your respect toward the academic integrity.

Problem 1. (15 points) The Frobenius norm defined for $\mathbf{A} \in \mathbb{C}^{n \times n}$ by $\|\mathbf{A}\|_F = (\operatorname{Tr}(\mathbf{A}^H \mathbf{A}))^{1/2}$ where $\operatorname{Tr}(\cdot)$ denotes the trace of a matrix. Show that

$$\|\mathbf{A}\|_F \leq (\operatorname{rank}(\mathbf{A}))^{1/2} \|\mathbf{A}\|_2,$$

where $\|\mathbf{A}\|_2 = \max_{\|\mathbf{x}\|_2=1} \|\mathbf{A}\mathbf{x}\|_2$ and \mathbf{x} is an $n \times 1$ vector.

Problem 2. (5 points) Let $\mathcal{U} = \{ \mathbf{x} \in \mathbb{R}^n_+ \mid \prod_{i=1}^n x_i \ge 1 \}$. Is \mathcal{U} a convex set? Justify your answer.

Problem 3. (7 points) Consider the sets $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{C} \subseteq \mathbb{R}^n$, where \mathcal{A} is a closed set. Assume that \mathcal{H} is a supporting hyperplane of \mathcal{A} and \mathcal{C} . Prove that: $(\mathbf{bd} \ \mathcal{A}) \cap \mathcal{H} \subseteq \mathbf{bd} \ \mathcal{B}$.

Problem 4. (8 points) Let K_i for $i = 1, \dots, n$ be cones.

(a) (4 points) Is $\mathcal{K}_1 \triangleq \bigcap_{i=1}^n K_i$ a cone? Justify your answer.

(b) (4 points) Let $\mathcal{K}_2 \triangleq \{\mathbf{x} = \sum_{i=1}^n \mathbf{x}_i | \mathbf{x}_i \in K_i\}$. Is \mathcal{K}_2 a cone? Justify your answer.

Problem 5. (10 points) Let $\mathcal{F} = \{(x_1, x_2) \in \mathbb{R}^2_+ \mid x_1^2 \leq x_2\}$. Is this a convex set? Justify your answer.

Problem 6. (15 points) Suppose $C \subset \mathbb{R}^n$ is a convex set and assume $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{x} \notin \mathbf{cl} C$. Prove that there exists a vector $\mathbf{a} \in \mathbb{R}^n$ such that $\langle \mathbf{a}, \mathbf{y} \rangle > \langle \mathbf{a}, \mathbf{x} \rangle$ for all $\mathbf{y} \in C$ (here: $\langle \mathbf{x}, \mathbf{y} \rangle \triangleq \mathbf{x}^T \mathbf{y}$).

Problem 7. (10 points) Show that the conic hull of any arbitrary set $C \subset \mathbb{R}^n$ can be represented as

conic
$$C = \{ \theta \mathbf{v} \mid \mathbf{v} \in \mathbf{conv} \ C, \theta \in \mathbb{R}_+ \},\$$

where **conv** C is the convex hull of the C.

Problem 8. (5 points) Let $\mathcal{P} \subseteq \mathbb{R}^n$ be defined as

$$\mathcal{P} \triangleq \left\{ \mathbf{x} = [x_1, \dots, x_n]^T \in \mathbb{R}^n \, \middle| \, \sum_{i=1}^n x_i \mathbf{A}_i \preceq_K \mathbf{B} \right\},\$$

where $\mathbf{A}_i \in \mathbb{R}^{m \times m}$, $\forall i \in \{1, \dots, n\}$, $\mathbf{B} \in \mathbb{R}^{m \times m}$, and K is a proper cone. Is \mathcal{P} a convex set?

Problem 9. (15 points) Let C be a set in \mathbb{R}^n . For any $\mathbf{x} \in \mathbf{conv} C$, prove that it can be represented as

$$\mathbf{x} = \sum_{i=1}^{d} \theta_i \mathbf{x}_i, \quad \theta_i \in [0, 1], \ \sum_{i=1}^{d} \theta_i = 1,$$

where $\mathbf{x}_i \in C$ such that $d \leq n+1$.

Problem 10. (10 points) Let $K \subseteq \mathbb{R}^n$ be a proper cone and K^* is its dual. If $y \in \mathbf{bd} K^*$ and $y \neq \mathbf{0}$, show that there exists a $\lambda \in K \setminus \{\mathbf{0}\}$ such that $\lambda^T y = 0$.