Convex	10810COM Optimization for Commu	I 524500 nications and Signal Processing
	Homew	
	Due: 01 Nov	
2 Million L	Instructor: Prof. C TA: Sadid S	0 0
• Every student must subr tion by herself (himse Late submission will be a 706) but with point reduc	elf) on the due date. accepted (at ECE Room	Name:
• As a NTHU student, stro sumed and punished oth whole homework score.	9	id:
otal points: 100		10 Questions
when S is not convex.		is prove that $(\theta_1 + \theta_2)S = \theta_1S + \theta_2S$ (total: 10 Points)
(a) Take nonempty bounded set $S \subset \mathbb{R}^n$. Prove that $\operatorname{cl}\operatorname{conv} S = \operatorname{conv} \operatorname{cl} S$.		
(b) Consider the two convex sets of S_1 and S_2 . Prove		
$\mathbf{relint}(S_1\cap \mathbf{a})$	aff S_2) \cap relint $S_2 \neq \emptyset$	$\Leftrightarrow S_1 \cap \operatorname{\mathbf{relint}} S_2 \neq \emptyset.$
From basic set theory, a partition A_1 and A_2 , such that:		
		s $(\mathbf{a}_j \in \mathbb{R}^N, j = 1, 2, \dots, N + 2, N \in$ ion of A into two subsets, such that:
Consider the set of points, X	$\triangleq \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ and point	

Define $H_{\mathbf{q}}(\mathbf{x}_i)$ as the halfspace that does not contain the point $\mathbf{q} \in \mathbb{R}^d$ and bounded by hyperplane $\mathcal{H}(\mathbf{q} - \mathbf{x}_i, \mathbf{x}_i)$. Show that

$$\bigcap_{i=1}^{n} H_{\mathbf{q}}(\mathbf{x}_{i}) = \emptyset \quad \Leftrightarrow \quad \mathbf{q} \in \mathbf{conv} \, X.$$

Q5(total: 10 Points) Consider $V = \{ \mathbf{x} \mid \mathbf{Ax} \succeq \mathbf{0} \}$ which is a cone. Prove that $V^* = \{ \mathbf{A}^T \mathbf{v} \mid \mathbf{v} \succeq \mathbf{0} \}$ which is the dual of V.

You might need to use the fact $(C \cap D)^* = C^* + D^*$ where C and D are cones and their duals are C^* and D^* , respectively.

Q6(total: 10 Points) (3 $_{pt.}$) (a) Represent the set $\{\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2_+ | x_1 x_2 \ge 1\}$, as the intersection of some family of halfspaces.

(3 pt.) (b) Suppose that C and D are disjoint subsets of \mathbb{R}^n . Show that the set,

$$A = \left\{ (\mathbf{a}, b) \in \mathbb{R}^{n+1} \, | \, \mathbf{a}^T \mathbf{x} \le b \, \forall \mathbf{x} \in C, \, \mathbf{a}^T \mathbf{x} \ge b \, \forall \mathbf{x} \in D \right\},\$$

is a **convex cone**.

- (4 pt.) (c) Consider two nonempty interior convex cones K_1 and K_2 . Show that if $\operatorname{int} K_1 \cap \operatorname{int} K_2 = \emptyset$, then there is $\mathbf{y} \neq \mathbf{0}$ such that, $\mathbf{y} \in K_1^*$, $-\mathbf{y} \in K_2^*$.
 - **Q7**(total: 10 Points) Let two nonempty sets, K and C, be subsets of \mathbb{R}^n . At least one of them is a cone and $\mathbf{cl} K \cap \mathbf{cl} C \neq \emptyset$. Consider a hyperplane, $\mathcal{H}(\mathbf{a} \in \mathbb{R}^n, b)$, which separates K and C such that,

$$b = \sup \left\{ \mathbf{a}^T \mathbf{x} \mid \mathbf{x} \in K \right\}.$$

Prove that the hyperplane passes through the origin.

Q9(total: 10 Points) Let $p, q \in \mathbb{Z}_{++}$. Denote $\mathbf{1}_p$ as all-one column vector of dimension p. Let,

$$L = \left\{ (\mathbf{x}, \mathbf{u}) \in \mathbb{R}^p \times \mathbb{R}^q \, \middle| \, \mathbf{x} \succeq_{\mathbb{R}^p_+} \| \mathbf{u} \|_2 \mathbf{1}_p \right\}$$
(9)

$$Z = \left\{ (\mathbf{x}, \mathbf{u}) \in \mathbb{R}^p \times \mathbb{R}^q \, \middle| \, \mathbf{x}^T \mathbf{1}_p \ge \|\mathbf{u}\|_2, \, \mathbf{x} \succeq_{\mathbb{R}^p_+} \mathbf{0} \right\}$$
(10)

Prove that $Z = L^*$ (*aka.* Z is the dual cone of L).

Q10 (total: 10 Points) Consider the entrywise matrix product operator, \odot , defined as $[\mathbf{A} \odot \mathbf{B}]_{ij} \triangleq [\mathbf{A}]_{ij}[\mathbf{B}]_{ij}$. Define the set $S \triangleq \{\mathbf{A} \odot \mathbf{I}_n - \mathbf{A} \odot \mathbf{A} \mid \mathbf{A}^2 = \mathbf{A}, \mathbf{A} \in \mathbb{S}^n\}$. (a) Prove that S is a subset of \mathbb{S}^n_+ . (b) Show whether the set S is a convex cone or not. (4 pt.)

References

 C.-Y. Chi, W.-C. Li, and C.-H. Lin, Convex optimization for signal processing and communications: from fundamentals to applications. CRC Press, 2019, (draft version: 13 June 2019).