COM 5245 Optimization for Communications - Fall 2017 Homework 2 (Due date: November 03, 2017)

Notations:

 $\mathbf{x} = [x_1, \dots, x_n]^T$ *n*-dimensional column vector

 $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_m] \quad n \times m \text{ matrix}$

dom f Domain of a function f

A function f is called log-convex/ log-concave if

- (1) $f(\mathbf{x}) > 0, \ \forall \mathbf{x} \in \mathbf{dom} \ f$
- (2) $\ln(f(\mathbf{x}))$ is convex/concave.

 $\|\mathbf{x}\|_p^p = \sum_{i=1}^n |x_i|^p$ the *p*th power of the l_p -norm of a vector $\mathbf{x} \in \mathbb{R}^n$

1. (30 points)

- (a) (10 points) Show that $\|\mathbf{x}\|_p^p$ is a convex function on \mathbb{R}^n for p > 1.
- (b) (5 points) Show that

$$f(\mathbf{x},t) \triangleq \frac{\|\mathbf{x}\|_p^p}{t^{p-1}}$$

is convex on $\{(\mathbf{x}, t) | \mathbf{x} \in \mathbb{R}^n, t > 0\}$.

- (c) (15 points) Show that $f(\mathbf{X}) = \text{Tr}(\mathbf{X}^{-1})$ is convex on **dom** $f = \mathbb{S}_{++}^n$.
- 2. (15 points) Verify quasiconvexity of the function $f(\mathbf{x}) = -x_1x_2$, with **dom** $f = \mathbb{R}^2_{++}$ by using
 - (a) (10 points) first-order condition for quasiconvexity.
 - (b) (5 points) second-order condition for quasiconvexity.
- 3. (20 points) Show that

$$f(\mathbf{x}) = \max_{k=1,\dots,m} \{\sum_{i=1}^{P} c_{ki} a_{1ki}^{x_1} a_{2ki}^{x_2} \dots a_{nki}^{x_n}\}$$

is a convex function in \mathbf{x} , where $\mathbf{x} = [x_1, \ldots, x_n]^T$, $c_{ki}, a_{jki} \in \mathbb{R}_{++}, \forall j = 1, \ldots, n, i = 1, \ldots, P, k = 1, \ldots, m$.

- 4. (10 points) Let $K \subseteq \mathbb{R}^m$ be a proper cone, and K^* denotes its dual cone. Show that a function $f : \mathbb{R}^n \to \mathbb{R}^m$ is K-convex if and only if for every $\mathbf{w} \succeq_{K^*} \mathbf{0}$, the function $\mathbf{w}^T f$ is convex.
- 5. (10 points)
 - (a) (5 points) Suppose that $f_i : \mathbb{R}^m \to \mathbb{R}$, i = 1, ..., n, are quasi-convex functions, and $w_i \ge 0$ for i = 1, ..., n. Show that the function $f : \mathbb{R}^m \to \mathbb{R}$ defined as

$$f(\mathbf{x}) \triangleq \max\{w_1 f_1(\mathbf{x}), \dots, w_n f_n(\mathbf{x})\}$$

is quasi-convex.

(b) (5 points) Suppose that $g : \mathbb{R}^m \to \mathbb{R}$ is quasi-convex, and $h : \mathbb{R} \to \mathbb{R}$ is nondecreasing. Show that the function $f : \mathbb{R}^m \to \mathbb{R}$ defined as

$$f(\mathbf{x}) \triangleq h(g(\mathbf{x}))$$

is quasi-convex.

6. (15 points) Let $K \subseteq \mathbb{R}^m$ be a proper cone with \preceq_K being the associated generalized inequality, and let $\boldsymbol{f} : \mathbb{R}^n \to \mathbb{R}^m$. For $\boldsymbol{\alpha} \in \mathbb{R}^m$, the $\boldsymbol{\alpha}$ -sublevel set of \boldsymbol{f} (with respect to \preceq_K) is defined as

$$C_{\boldsymbol{\alpha}} = \{ \mathbf{x} \in \mathbb{R}^n | \boldsymbol{f}(\mathbf{x}) \preceq_K \boldsymbol{\alpha} \}.$$

The epigraph of f, with respect to \leq_K , is defined as the set

$$\mathbf{epi}_K \mathbf{f} = \{(\mathbf{x}, \mathbf{t}) \in \mathbb{R}^{n+m} | \mathbf{f}(\mathbf{x}) \preceq_K \mathbf{t} \}.$$

Show the following:

- (a) (5 points) If f is K-convex, then its sublevel sets C_{α} are convex for all α .
- (b) (10 points) \boldsymbol{f} is K-convex if and only if $\mathbf{epi}_K \boldsymbol{f}$ is a convex set.